5.5 MR案例——倒排索引

本文详细讲解了如何使用MapReduce实现倒排索引。从倒排索引的概念,到案例的需求分析,再到Map、Combine、Reduce阶段的具体实现,以及Driver主类的编写和运行结果的查看,全方位解析倒排索引的构建过程。
摘要由CSDN通过智能技术生成

目录

零、学习目标

一、导入新课

二、新课讲解

(一)案例分析

1、倒排索引介绍 

2、案例需求及分析

(二)案例实现

1、准备数据文件

2、Map阶段实现 

3、Combine阶段实现

4、Reduce阶段实现 

5、Driver主类实现 

6、运行倒排索引驱动器类,查看结果


零、学习目标

  1. 理解倒排索引
  2. 实现倒排索引

一、导入新课

  • 通过上节课的学习,我们对MapReduce运行模式和性能优化策略有了一定的认识。本节课将针对MapReduce经典案例——倒排索引进行详细讲解。

二、新课讲解

(一)案例分析

1、倒排索引介绍 

倒排索引是文档检索系统中最常用的数据结构,被广泛应用于全文搜索引擎。倒排索引主要用来存储某个单词(或词组)在一组文档中的存储位置的映射,提供了可以根据内容来查找文档的方式,而不是根据文档来确定内容,因此称为倒排索引(Inverted Index)。带有倒排索引的文件我们称为倒排索引文件,简称倒排文件(Inverted File)。

2、案例需求及分析

  • 现假设有三个源文件file1.txt、file2.txt和file3.txt,需要使用倒排索引的方式对这三个源文件内容实现倒排索引,并将最后的倒排索引文件输出。

 

首先,使用默认的TextInputFormat类对每个输入文件进行处理,得到文本中每行的偏移量及其内容。Map过程首先分析输入的<key,value>键值对,经过处理可以得到倒排索引中需要的三个信息:单词、文档名称和词频。

 

经过Map阶段数据转换后,同一个文档中相同的单词会出现多个的情况,而单纯依靠后续Reduce阶段无法同时完成词频统计和生成文档列表,所以必须增加一个Combine阶段,先完成每一个文档的词频统计。

 

经过上述两个阶段的处理后,Reduce阶段只需将所有文件中相同key值的value值进行统计,并组合成倒排索引文件所需的格式即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值