一、介绍
1.什么是进制?
进制就是进位计数制,是人为定义的带进位的计数方法
对于任何一种进制(n进制),就表示每一位上的数运算时都是逢n进一位
2.常见的进制
二进制由数字0~1组成,逢二进一,
八进制由数字0~7组成,逢八进一,
十进制由数字0~9组成,逢十进一,
十六进制由数字0~15组成,逢十六进一,
由此可得:n进制由0~(n-1)组成,逢n进一
3.在c语言中,进制的表示方法
ob开头就是二进制,如ob0101
0开头就是八进制,如02
十进制就是我们日常生活使用的阿拉伯数字,不用前缀
0x开头就是十六进制,如0x8A
二、整数转换
1.十进制转为为二、八、十六进制
(1)十进制转换为二进制
十进制转为二进制的原理:十进制数除以2,余数为权位上的数,得到商继续除以2,直到商为0终止,然后反向取余数。
具体实现:
例如将十进制数58转换为二进制
将58除以2得商29,余数1。将商(29)作为第二次的被除数一次类推,直到商为0.
(2)十进制转换为八进制
十进制转为八进制的原理:十进制数除以8,余数为权位上的数,得到商继续除以8,直到商为0终止,然后反向取余数。
具体实现:
例如将十进制数58转换为八进制数
将758除以8得商94,余数6。将商(94)作为第二次的被除数一次类推,直到商为0.
(3)十进制转换为十六进制
十进制转为十六进制的原理:十进制数除以16,余数为权位上的数,得到商继续除以8,直到商为0终止,然后反向取余数。
具体实现:
将十进制数989转换为十六进制数
将989除以16得商61,余数13。将商(61)作为第二次的被除数一次类推,直到商为0.
2.二、八、十六进制转换为十进制
三、小数转换
1.十进制小数转换为二进制、八进制、十六进制小数
2.二进制、八进制、十六进制小数转换为十进制小数
参照表: