Python数据分析——数据缺失篇(自用)

38 篇文章 1 订阅
24 篇文章 0 订阅

数据缺失是一个常见的现象

对于要处理的数据首先就要检查是否有缺失的情况,此时就要用到两个方法(两个方法的是一样的)。如果将缺失值纳入计算,默认为将NA看作0来进行计算

操作数据帧:

①全检查

②部分列检查

notnull()的使用方法与isnull()是一样的!!!

对缺失值的补救操作

①丢失NAN的数据

dropna()函数:默认axis=0,默认使用在行上,意味着行内的任何值为NA,那么整个行被排除:使用方法:df.dropna(axis=0),基本在机器学习中使用axis=1的使用

②填充NAN的数据:

df.fillna(method=bfill,axis=1)向后填充,也可以向前填充fill

③替换NAN的数据:

df.replace({np.nan:1000})将nan替换为1000

④插值替换NAN的数据:有点像最近邻K的方法

df.interpolate(method=linear,axis=0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值