
学习记录
文章平均质量分 54
代码的建筑师
这个作者很懒,什么都没留下…
展开
-
基于Google浏览器版本更新导致的更换驱动出现的问题(自用)
更新 ChromeDriver 以匹配 Google 浏览器版本:查看浏览器版本(方法一:设置 > 关于;方法二:输入 chrome://version/)。使用终端命令 where chromedriver 找到旧版路径并删除 chromedriver.exe。从 Chrome for Testing 下载新版本驱动。更新环境变量(可选,若原位置更新则无需更改)。运行 chromedriver --version 验证更新,若失败可运行 ipconfig /flushdns 清除缓存。原创 2025-02-20 12:03:12 · 133 阅读 · 0 评论 -
DeepSeek-R1模型的认识(自用)
DeepSeek-R1模型对标OpenAI-o1,通过强化学习实现自我进化,具备强大推理能力。其训练采用少量冷启动数据和多阶段流程,结合基于结果和思考过程的奖励机制。衍生模型基于Qwen和Llama提炼,参数规模从1.5B到70B不等。原创 2025-02-18 23:11:45 · 192 阅读 · 0 评论 -
Embedding模型选取(自用)
本文介绍 embedding 模型选取要点,包括句子长度、向量维度、模型大小等四点要求,还提及内部实现过程与主题相关模型训练流程,并推荐在 Huggingface 上找模型排行榜以助选择。原创 2025-02-18 17:23:48 · 120 阅读 · 0 评论 -
DeepSeek -V3模型的内部细节的自我理解(自用)
近年来,自然语言处理领域取得了显著进展。BERTopic模型通过合理选取embedding模型,结合分词、word embedding及Pooling操作,有效表示文本信息。DeepSeek-V3在混合专家模型优化方面表现出色,通过将专家分类为共享专家和路由专家,并结合门控网络,提升了模型性能。此外,MLA注意力机制通过低秩联合压缩,显著减少了KV缓存,提高了推理效率。同时,无辅助损失的负载均衡策略和多token预测(MTP)技术进一步优化了模型的计算效率和推理速度。这些创新为大模型的发展提供了有力支持原创 2025-02-18 15:16:52 · 725 阅读 · 0 评论 -
基于恒源云平台的pycharm的SSH远程连接(自项自用)
对于自己项目中关于pycharm与恒源云算力平台设置的一些经验总结!为自己后面进行项目配置提供便利原创 2025-02-16 11:28:37 · 307 阅读 · 0 评论 -
BERTopic模型使用的注意事项(自用)
本文介绍了如何使用BERTopic进行文本主题建模和可视化。BERTopic结合了SentenceTransformer、UMAP和HDBSCAN等工具,能够高效地从文本数据中提取主题。通过visualize_topics()方法,可以直观地展示主题分布;visualize_hierarchy()方法则用于呈现主题的层次结构。此外,visualize_heatmap()和visualize_barchart()方法分别用于展示主题间的相似度和关键词权重。这些可视化工具帮助用户更好地理解和解释主题建模的结果。原创 2025-02-11 20:36:25 · 272 阅读 · 0 评论 -
BERTopic主题聚类模型的认识(自用)
本文探讨了基于BERTopic的主题建模技术及其多种实现方式。BERTopic结合了BERT嵌入和聚类算法,能够高效提取文本数据的主题。通过使用不同的嵌入模型(如SentenceTransformer、OpenAI模型)和调整降维(UMAP)及聚类(HDBSCAN)参数,可以灵活优化主题建模效果。此外,还介绍了利用TF-IDF向量进行主题建模的方法,以及如何通过自定义降维模型实现无降维的主题提取。这些方法为文本分析提供了多样化的工具,有助于深入挖掘文本数据的内在结构和主题信息。原创 2025-02-09 23:05:26 · 1151 阅读 · 0 评论 -
高维数据降维的三种方法(自用)
摘要:本文对比了PCA、t-SNE和UMAP三种降维方法。PCA是线性方法,时间复杂度为 O(n3),适合线性数据,能保留较多原始信息。t-SNE是非线性方法,时间复杂度为 O(nlogn),擅长保留局部结构,但不适合大规模数据且无法捕获全局结构。UMAP通过拓扑结构实现降维,时间复杂度为 O(n1.14),能同时保留全局和局部结构,适合复杂数据。实验表明,UMAP在处理复杂数据时表现最佳,其次是t-SNE和PCA原创 2025-02-09 13:36:03 · 342 阅读 · 0 评论 -
在学习模型外围知识的一些思考(自用)
本文探讨了多种交互方式,包括 HCI、GUI 和 NUI,分别阐述了它们的交互特点和目的。在论文主题相似性方面,提及 KNN 分类方法以及有监督学习的应用。介绍了模型参数中的 temperature 对输出结果的影响,以及模型四要素。指出数据质量对模型性能的重要性,并说明大模型在处理错误内容时的局限性。阐述了视觉 + 多模态发表论文的四个方向,包括大模型微调、新领域应用、数据集构建与评估以及即插即用方式。强调 prompt 工程的重要性,以及从 Hard Prompt 到 Soft Prompt 的转变,提原创 2025-02-08 13:06:58 · 396 阅读 · 0 评论 -
Deepseek的API调用使用(自用)
Deepseek的API调用使用(自用)原创 2025-01-13 13:30:43 · 40021 阅读 · 0 评论 -
如何搭建自己的卷积神经网络模型(自用)
如何搭建自己的卷积神经网络模型(自用)原创 2024-12-13 20:54:57 · 352 阅读 · 0 评论 -
粒子球(自用)
【代码】粒子球(自用)原创 2024-12-13 10:40:50 · 122 阅读 · 0 评论 -
恒源云使用(自用)
恒源云使用(自用)原创 2024-12-12 17:20:34 · 296 阅读 · 0 评论 -
CUDA环境配置(自用)
CUDA环境配置(自用)原创 2024-11-29 10:41:07 · 632 阅读 · 0 评论 -
数字图像处理——人工神经网络ANN(前向网络FFN、反向传播算法BP)
数字图像处理——人工神经网络ANN(前向网络FFN、反向传播算法BP)原创 2024-11-22 17:44:49 · 778 阅读 · 0 评论 -
数字图像处理——模板匹配
数字图像处理——模板匹配原创 2024-11-22 14:49:55 · 214 阅读 · 0 评论 -
数字图像处理——最小距离分类器
最小距离分类器(最近邻分类)其常用的度量有欧式距离、马氏距离原创 2024-11-21 22:36:15 · 256 阅读 · 0 评论 -
数字图像处理——特征提取(局部二进制模式LBP)
数字图像处理——特征提取(局部二进制模式LBP)原创 2024-11-19 21:09:34 · 312 阅读 · 0 评论 -
数字图像处理——特征提取中的降低维度(特征选择、特征抽取)
从上面看右图比左图在分类这块是更好区分的,左图分类较为混乱,这说明了在使用模型来解决分类问题的时候,如果特征选择的不恰当可能导致模型训练的效果非常不佳。②特征抽取:通过已有的特征的组合建立一个新的特征子集。①特征选择:是指选择全部特征的一个子集作为特征向量。对得到的特征维度过多可能会出现”维度灾难“等问题。原创 2024-11-18 22:38:55 · 226 阅读 · 0 评论 -
数字图像处理——图像分割(阈值分割、区域生长、区域分割、区域合并)
数字图像处理——图像分割(阈值分割、区域生长、区域分割、区域合并)原创 2024-11-18 18:34:32 · 619 阅读 · 0 评论 -
数字图像处理——霍夫变换(Hough变换:直线检测、最长线段确定)
数字图像处理——霍夫变换(Hough变换:直线检测、最长线段确定)原创 2024-11-17 16:21:09 · 199 阅读 · 0 评论 -
数字图像处理——边缘检测(一阶、二阶算子在边缘检测方面的优缺点)
数字图像处理——边缘检测(一阶、二阶算子在边缘检测方面的优缺点)原创 2024-11-17 15:07:28 · 1213 阅读 · 0 评论 -
数字图像处理——灰度形态学(顶帽变换学习)
数字图像处理——灰度形态学(顶帽变换学习)原创 2024-11-14 22:00:25 · 253 阅读 · 0 评论 -
基于神经网络的识别MNIST手写数字模型实验过程及优化尝试
基于神经网络的识别MNIST手写数字模型实验过程及优化尝试原创 2024-11-14 18:34:25 · 1001 阅读 · 0 评论 -
数字图像处理——图像增强(滤波、模板、一阶算子、二阶算子、自适应滤波)
数字图像处理——图像增强(滤波、模板、一阶算子、二阶算子、自适应滤波)原创 2024-11-09 20:36:57 · 570 阅读 · 0 评论 -
数字图像处理——频域处理与复原(实验全过程+实验代码)
数字图像处理——频域处理与复原(实验全过程+实验代码)原创 2024-10-16 16:40:20 · 601 阅读 · 13 评论 -
相交链表leetcode160——四种解题思路及代码
相交链表leetcode160——四种解题思路及代码原创 2024-10-16 00:01:52 · 471 阅读 · 0 评论 -
视频生成——MiniMax和通义万象(目前免费使用)
视频生成——MiniMax和通义万象(目前免费使用)原创 2024-10-15 21:13:13 · 2705 阅读 · 0 评论 -
数字图像处理——对医疗点运算、直方图均衡化、空域滤波3种增强算法进行定量评估(PSNR、SSIM)实验全过程+实验代码,接上篇!
数字图像处理——对医疗点运算、直方图均衡化、空域滤波3种增强算法进行定量评估(PSNR、SSIM),接上篇!原创 2024-10-15 12:40:48 · 462 阅读 · 0 评论 -
数字图像处理——医疗图像增强实验全过程+实验代码
数字图像处理——医疗图像增强实验全过程+实验代码原创 2024-10-15 12:29:33 · 1357 阅读 · 0 评论 -
数字图像处理——图像编辑(去雾)实验全过程+实验代码
数字图像处理——图像编辑(去雾)实验全过程+实验代码原创 2024-10-15 12:10:56 · 886 阅读 · 0 评论 -
数字图像处理——图像编辑(缝刻)实验全过程+实验代码
数字图像处理——图像编辑(缝刻)实验全过程+实验代码原创 2024-10-15 12:04:55 · 447 阅读 · 0 评论 -
数字图像处理——纹理合成(实验全过程+实验代码)
数字图像处理——纹理合成(实验全过程+实验代码)原创 2025-01-11 15:41:58 · 225 阅读 · 0 评论 -
数字图像处理——图像混合(实验全过程+实验代码)
数字图像处理——图像混合(实验全过程+实验代码)原创 2025-01-11 15:42:49 · 1653 阅读 · 1 评论 -
数字图像处理——甲骨图像文字识别
数字图像处理——甲骨图像文字识别原创 2025-01-11 15:43:13 · 4641 阅读 · 11 评论 -
Neo4j——安装jdk和neo4j过程中的注意事项、流程、安装包版本链接、个人建议和解决方法
Neo4j——安装jdk和neo4j过程中的注意事项、流程、安装包版本链接、个人建议和解决方法原创 2024-10-14 14:58:30 · 883 阅读 · 0 评论 -
编译原理——LR分析实验全过程+实验代码
编译原理——LR分析实验全过程+实验代码原创 2024-10-14 14:36:40 · 2469 阅读 · 0 评论 -
编译原理——非递归预测分析实验全过程+实验代码
编译原理——非递归预测分析实验全过程+实验代码原创 2024-10-14 14:29:10 · 434 阅读 · 0 评论 -
编译原理——NFA转DFA实验全过程+实验代码
编译原理——NFA转DFA实验全过程+实验代码原创 2024-10-14 14:18:54 · 1671 阅读 · 1 评论 -
Python数据分析——常用操作(自用Over)
Python数据分析——常用操作(自用Over)原创 2024-10-13 16:44:15 · 320 阅读 · 0 评论