暴力枚举解决哈密顿回路问题

默认以1为初始节点,生成2到N的全排列,验证1--排列--1是否为哈密顿回路。

1、从2到N进行全排列

2、对每一个排列进行验证是否是哈密顿回路

void f1()

{

 int V[N+2],num=1;

 

 for(int i=1;i<=N;i++) V[i]=i; 

 V[N+1]=V[1];

 

 for(int i=1;i<=N;i++) num*=E[ V[i] ][ V[i+1] ];//先对1到n这个排列进行验证 

 

 if(num) 

 {

  tot1++;

// for(int i=1;i<=N+1;i++) printf(i==1?"%d":"--%d",V[i]);

// cout<<"是一条哈密顿回路"<<endl; 

 }

 

 while(next_permutation(V+1,V+1+N)) 

 {

  if(V[1]!=1) break;//保证这条通路是从点1开始的 

  num=1;

  

  for(int i=1;i<=N;i++) num*=E[ V[i] ][ V[i+1] ];//验证 

  

  if(num) 

  {

   tot1++;

// for(int i=1;i<=N+1;i++) printf(i==1?"%d":"--%d",V[i]);

// cout<<"是一条哈密顿回路"<<endl; 

  }

 }

 }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值