层次分析法Matlab代码

%%输入判断矩阵

clear;clc

disp('请输入判断矩阵A:')

% A = input("判断矩阵A=")

A=[1 1 4 1/3 3;

1 1 4 1/3 3;

1/4 1/4 1 1/3 1/2;

3 3 3 1 3;

1/3 1/3 2 1/3 1]

% matlab矩阵有两种写法,可以直接写到一行:

% [1 1 4 1/3 3;1 1 4 1/3 3;1/4 1/4 1 1/3 1/2;3 3 3 1 3;1/3 1/3 2 1/3 1]

%也可以写成多行:

A=[1 1 4 1/3 3;

1 1 4 1/3 3;

1/4 1/4 1 1/3 1/2;

3 3 3 1 3;

1/3 1/3 2 1/3 1]

%每一行之间用分号;隔开,最后一行的分好可不加,同工行元素之间以空格(或者逗号隔开)

%%方法1:算术平均法求权重

%第一步:将判断矩阵按照列归一化(每一个元索除以其所在列的和)

Sum_A = sum(A)

[n,n] = size(A) %也可以写成n = size(A,1)

%因为我们的判断矩阵A是一个方阵, 所以这里的和c相同,我们可以就用同一个字母n表示

SUM_A = repmat(Sum_ A,n,1) %repeat matrix的缩写

%另外一种替代的方法如下:

%SUM_A = [];

%for i= 1:n %循环, 这一行后面不能加冒号 (和Python不同),这里表示循环n次

% SUM_A= [SUM_A;Sum_A]

%end

clc;A

SUM_A

Stand_A = A ./ SUM_A

%这里我们直接将两个矩阵对应的元素相除即可

%第二步:将归一化的各列相加(按行求和)

sum(Stand_A,2)

%第三步:将相加后得到的向量中每个元素除以n即可得到权重向量

disp('算术平均法求权重的结果为: ');

disp(sum(Stand_ A,2) / n)

%首先对标准化后的矩阵按照行求和,得到一个列向量

%然后再将这个列向量的每个元素同时除以n即可(注意这里也可以用./哦)

%%方法2:几何平均法求权重

%第一步: 将A的元素按照行相乘得到一个新的列向量

clc;A

Product_A = prod(A.2)

% prod函数和sum函数类似(累乘),一个用于乘,一个用于加dim = 2维度是行

%第二步:将新的向量的每个分量开n次方

Product_n_A= Product_A .^ (1/n)

%这里对每个元素进行乘方操作,因此要加.号哦。^符号表示乘方哦 这里是开n次方,所以我们等价求1/n次

%第三步:对该列向量进行归-化即可得到权重向量

%将这个列向量中的每一个元素除以这一个向量的和即可

disp(几何平均法求权重的结果为: );

disp(Product_n_A ./ sum(Product_n_A))

%%方法3:特征值法求权重

%第一步: 求出矩阵A的最大特征值以及其对应的特征向量

clc;

[V,D] = eig(A)

%V是特征向量,D是由特征值构成的对角矩阵(除了对角线元素外,其余位置元素全为0)

Max_eig = max(max(D)) %也可以写成max(D(:))

%那么怎么找到最大特征值所在的位置了?需要用到find函数, 它可以用来返回向量或者矩阵中不为0的元素的位置索引。

%那么问题来了,我们要得到最大特征值的位置,就需要将包含所有特征值的这个对角矩阵D中,不等于最大特征值的位置全变为0

%这时候可以用到矩阵与常数的大小判断运算

D == Max eig

[r,c] = find(D == Max_eig, 1)

%找到D中第一个与最大特征值相等的元素的位置, 记录它的行和列。

%第二步: 对求出的特征向量进行归一 化即可得到我们的权重

V(:,c)

disp(特征值法求权重的结果为: );

disp(V(:,c) ./ sum(V(:,c)))

%我们先根据上面找到的最大特征值的歹数c找到对应的特征向量,然后再进行标准化。

%%计算一致性比例CR

clc

CI = (Max_eig - m) / (n-1);

RI = [0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59]; %注意哦,这里的RI最多支持n= 15

CR = CI/RI(n);

disp('一致性指标CI=');disp(CI);

disp('一致性比例CR=";disp(CR);

if CR

disp('因为CR < 0.10,所以该判断矩阵A的一致性可以接受!'):

else

disp('注意: CR >= 0.1,因此该判断矩阵A需要进行修改!');

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值