关于用户广告点击数据集的分析与预测

 摘要

用户点击广告是广告业务中的常见场景,这类数据可以帮助平台优化用户体验、提升转化率。对于系统来说,广告点击预测是一个非常重要的问题,因为它关系到广告是否能够在合适的时间展示给合适的人。

通过背景介绍,原始数据解读及处理,以及数据可视化分析的方法,得出以下结论。首先,根据数据分析结果,发现广告点击率与时间的关系不显著,波动较小。其次,男女生点击率相差不大,但是周末男生的点击率明显高于女生。

此外,广告点击率随用户浏览页面的时间和每天在互联网上的平均时间的增加而逐渐降低。另外,广告点击率与用户所在地理区域的收入均值呈负相关。

在数据可视化结果中,发现广告点击率与用户每天在互联网上的平均时间、用户浏览页面的时间以及用户所在地理区域的收入均值更为相关。尽管根据可视化结果来看,年龄越高,点击率越高,但是考虑到年龄增长可能导致用户在网页上花费的时间减少,认为用户每天在互联网上的平均时间仍然是影响广告点击率的主要因素。

因此,本篇报告的研究结果为理解广告点击率与各种因素之间的关系提供了重要参考。并且使用随机森林进行训练,预测,最终得到一个广告点击率预测模型。使用shiny创建页面,调用训练好的模型,根据输入的参数,输出用户点击广告的概率。

关键字:随机森林 shiny 数据可视化 广告点击率 R语言

  • 背景介绍

在广告业务中,系统需要从历史数据中提取出一系列有效信息,再通过随机森林的方法将这些有效信息训练成模型。在训练好模型后,系统会根据模型输出结果对广告展示时间进行预测,进而指导广告的投放。

然而,对于海量数据的分析,仅依靠原始数据显然是不够的。广告业务中的广告点击预测是一个典型的大数据问题,它是一个多变量、高维、非连续的问题。由于历史数据中往往会存在大量无效和异常值,使得训练模型时出现一些错误。

此外,由于广告点击预测是一个非确定性问题,系统需要在每次预测时都能取得一个不错的效果。因此,模型需要能够在一次预测中取得较好的结果。

  • 原始数据解读及处理

2.1 原始数据解读

我们先从原始数据中抽取部分有效信息,并进行解读

times_pd:表示用户每天花在网站上的时间,单位为分钟

age:表示用户年龄

avg_incom:表示地区收入均值,单位为美元

avg_netTimes_pd:表示用户

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值