完全背包问题

题目描述:  

        有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

        第 i 种物品的体积是 vi,价值是 wi。

        求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
        输出最大价值。

输入格式:

        第一行两个整数,N,V用空格隔开,分别表示物品种数和背包容积。

        接下来有 N行,每行两个整数 vi,wi用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式:

       输出一个整数,表示最大价值。

数据范围:

       0<N,V≤1000
       0<vi,wi≤1000

输入样例:

4 5
1 2
2 4
3 4
4 5

输出样例:

10

朴素版: 

# include <iostream>
using namespace std;
const int N = 1010;
int f[N][N], v[N], w[N];
int main()
{
	int n, m;
	cin >> n >> m;
	for(int i=1;i<=n;i++)
	{
		cin >> v[i] >> w[i];
	}
	for(int i=1;i<=n;i++)
	{
		for (int j = 1;j<=m;j++)
		{
			for (int k = 0;k*v[i]<=j;k++)
			{
				f[i][j] = max(f[i][j], f[i - 1][j - v[i] * k] + w[i]*k);
			}
		}
	}
	cout << f[n][m] << endl;
	return 0;
}

 优化版:

# include <iostream>
using namespace std;
const int N = 1010;
int f[N][N], v[N], w[N];
int main()
{
	int n, m;
	cin >> n >> m;
	for(int i=1;i<=n;i++)
	{
		cin >> v[i] >> w[i];
	}
	for(int i=1;i<=n;i++)
	{
		for (int j = 1;j<=m;j++)
		{
			f[i][j] = f[i - 1][j];
			if(j>=v[i])
			{
				f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
			}
		}
	}
	cout << f[n][m] << endl;
	return 0;
}

最简版: 

# include <iostream>
using namespace std;
const int N = 1010;
int f[N], v[N], w[N];
int main()
{
	int n, m;
	cin >> n >> m;
	for (int i = 1; i <= n; i++)
	{
		cin >> v[i] >> w[i];
	}
	for (int i = 1; i <= n; i++)
	{
		for (int j = v[i]; j <= m; j++)
		{
			f[j] = max(f[j], f[j - v[i]] + w[i]);
		}
	}
	cout << f[m] << endl;
	return 0;
}

 

 

完全背包问题是一个经典的动态规划问题,它与01背包问题类似,但有一个重要的区别。在完全背包问题中,每种物品可以选择无限次放入背包中,而在01背包问题中,每种物品只能选择一次放入背包中。 解决完全背包问题的一种常见方法是将其转化为01背包问题。根据引用[3]中的思路,我们可以将每种物品拆分成多件只能选0件或1件的01背包中的物品。具体做法是,对于第i种物品,我们将其拆分成⌊V /Ci⌋件费用和价值均不变的物品,然后求解这个01背包问题。 在求解过程中,我们需要确定状态变量(函数)和状态转移方程。状态变量可以定义为dp[i][j],表示前i种物品放入容量为j的背包中所能获得的最大价值。状态转移方程可以表示为dp[i][j] = max(dp[i-1][j-k*Ci] + k*Wi),其中k表示第i种物品的数量。 边界条件是dp[0][j] = 0,表示没有物品可选时,背包的价值为0;dp[i][0] = 0,表示背包容量为0时,无法放入任何物品。 通过以上的分析,我们可以得到完全背包问题的动态规划解法。具体的代码实现和优化可以参考引用[1]和引用[2]中的内容。 总结起来,完全背包问题是一个经典的动态规划问题,可以通过将其转化为01背包问题来求解。在求解过程中,需要确定状态变量和状态转移方程,并考虑边界条件。通过动态规划的方法,可以高效地解决完全背包问题

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值