前言
二分查找简介
定义:
二分就是每次把当前需要寻找的数组分成两半,那么我需要寻找的这个数只可能在左半边,或者右半边,这样一来我每次分完,所需要查找的元素的个数就是上一次查找元素个数的一半。
思路:
先找出当前判断的数组中点,将目标值与当前中点值比较,判断是继续在左侧查找还是在右侧查找,直到需要判断的数组元素为1个时,判断此元素是否是需要查的元素,若是则返回该元素下标,否则则返回-1,结束查找。
特点:
细节最多,最容易写出死循环的算法;
注意:二分查找不止适用于数组有序,数组无序的一些问题依然可以用二分查找,只要找出其中的规律,再在模板上进行适当修改即可;
二分查找模板有3种:
(1)朴素的二分模板;(2)查找左边界的二分模板;
(3)查找右边界的二分模板;
一、二分查找
1.1 题目描述
描述:
给定一个
n
个元素有序的(升序)整型数组nums
和一个目标值target
,写一个函数搜索nums
中的target
,如果目标值存在返回下标,否则返回-1
。
提示:
- 你可以假设
nums
中的所有元素是不重复的。n
将在[1, 10000]
之间。nums
的每个元素都将在[-9999, 9999]
之间。
示例1:
实例2:
1.2 题目解析
1.2.1 算法原理
本题我们采用二分查找的方法进行解决;
解题步骤:
步骤一: 首先定义 left , right 指针,分别指向数组的左右区间。
步骤二:找到待查找区间的中间点 mid ,找到之后分三种情况讨论:
情况1: arr[mid] == target 说明正好找到,返回 mid 的值;
情况2:arr[mid] > target 说明 [mid, right] 这段区间都是⼤于 target 的,因此舍
去右边区间,在左边 [left, mid -1] 的区间继续查找,即让 right = mid - 1 ,然后重复 2 过程;
情况3:arr[mid] < target 说明 [left, mid] 这段区间的值都是⼩于 target 的,因此舍去左边区间,在右边 [mid + 1, right] 区间继续查找,即让 left = mid + 1 ,然后重复 2 过程;
步骤三:
当 left 与 right 错开时,说明整个区间都没有这个数,返回 -1 。
1.2.2 代码编写
代码解析:
二、在排序数组中查找元素的第一个和最后一个位置
2.1 题目描述
描述:
给你一个按照非递减顺序排列的整数数组
nums
,和一个目标值target
。请你找出给定目标值在数组中的开始位置和结束位置。如果数组中不存在目标值
target
,返回[-1, -1]
。你必须设计并实现时间复杂度为
O(log n)
的算法解决此问题。
提示:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
nums
是一个非递减数组-109 <= target <= 109
示例1:
示例2:
示例3:
2.2 题目解析
2.2.1 算法原理
算法思路:
用的还是二分思想,就是根据数据的性质,在某种判断条件下将区间一分为二,然后舍去其中一个区间,然后再另一个区间内查找。方便叙述,寻找左边界思路:
寻找左边界思路:
我们注意到以左边界划分的两个区间的特点:
(1)左边区间[left,resLeft - 1]都是小于x的;
(2)右边区间(包括左边界)[resLeft,right]都是大于等于x的;
因此,关于mid的落点,我们可以分为下面两种情况:
(1)当mid落在[left,resLeft - 1]区间的时候,也就是 arr[mid] <target。
说明[left,mid]都是可以舍去的,此时更新left到mid + 1的位置,继续在[mid + 1,right]上寻找左边界;
(2)当mid落在 [resLeft,right]的区间的时候,也就是arr[mid] >= target。
说明[mid + l,right](因为mid可能是最终结果,不能舍去)是可以舍去的,此时更新right到mid的位置,继续在[left,mid]上寻找左边界;
由此,就可以通过二分,来快速寻找左边界;
注意:这里找中间元素需要向下取整。
因为后续移动左右指针的时候:
(1)左指针: left = mid + 1,是会向后移动的,因此区间是会缩小的;
(2)右指针:right = mid ,可能会原地踏步(比如:如果向上取整的话,如果剩下1,2两个元素,left == 1,right == 2 , mid == 2。更新区间之后,left,right,mid的值没有改变,就会陷入死循环)。
因此一定要注意,当right = mid的时候,要向下取整。
寻找左边界模板:
while(left < right)
{
int mid = left + (right - left)/ 2;
if(......) left = mid + 1;
else right = mid;
}
寻找右边界思路:
用resRight表示右边界;
我们注意到右边界的特点:
(1)左边区间 (包括右边界)[left,resRight]都是小于等于x的;
(2)右边区间[resRight + 1,right]都是大于的;
因此,关于mid的落点,我们可以分为下面两种情况:
情况(1):当mid落在[left,resRight了区间的时候,说明([left,mid - 1]( mid 不可以舍去,因为有可能是最终结果)都是可以舍去的,此时更新left 到mid的位置。
情况(2):当mid 落在「resRightt'i, right]的区间的时候,说明[mid,right]内的元素是可以舍去的,此时更新right到mid - 1的位置;
由此,就可以通过分,来快速寻找右边界;
注意:这里找中间元素需要向上取整。
因为后续移动左右指针的时候:
(1)左指针:left = mid,可能会原地踏步(比如:如果向下取整的话,如果剩下1,2两个元素,left == 1,right == 2,mid == 1。更新区间之后,left,right,mid的值没有改变,就会陷入死循环)。
(2)右指针:right = mid - 1,是会向前移动的,因此区间是会缩小的;因此一定要注意,当right = mid的时候,要向下取整。
因此一定要注意,当 right = mid 的时候,要向下取整。寻找右边界模板:while(left < right)
{
int mid = left + (right - left + 1) / 2;
if(......) left = mid ;
else right = mid - 1;
}
二分查找算法总结:
请大家一定不要觉得背下模板就能解决所有二分问题。二分问题最重要的就是要分析题意,然后确定要搜索的区间,根据分析问题来写出二分查找算法的代码。要分析题意,确定搜索区间,不要死记模板,不要看左闭右开什么乱七八糟的题解要分析题意,确定搜索区间,不要死记模板,不要看左闭右开什么乱七八糟的题解要分析题意,确定搜索区间,不要死记模板,不要看左闭右开什么乱七八糟的题解重要的事情说三遍。
模板记忆技巧:
1.关于什么时候用三段式,还是二段式中的某一个,一定不要强行去用,而是通过具体的问题分析情况,根据查找区间的变化确定指针的转移过程,从而选择一个模板。
2.当选择两段式的模板时:
在求mid的时候,只有right - 1的情况下,才会向上取整(也就是+1取中间数)