【优选算法系列】【专题三二分查找】第一节.二分查找简介(704. 二分查找和34. 在排序数组中查找元素的第一个和最后一个位置)

文章目录

前言

二分查找简介

一、二分查找

1.1 题目描述

1.2 题目解析

1.2.1 算法原理

1.2.2 代码编写

二、在排序数组中查找元素的第一个和最后一个位置

2.1 题目描述

2.2 题目解析

2.2.1 算法原理

2.2.2 代码编写

总结



前言

二分查找简介

定义:

二分就是每次把当前需要寻找的数组分成两半,那么我需要寻找的这个数只可能在左半边,或者右半边,这样一来我每次分完,所需要查找的元素的个数就是上一次查找元素个数的一半。


思路:

先找出当前判断的数组中点,将目标值与当前中点值比较,判断是继续在左侧查找还是在右侧查找,直到需要判断的数组元素为1个时,判断此元素是否是需要查的元素,若是则返回该元素下标,否则则返回-1,结束查找。


特点:

细节最多,最容易写出死循环的算法;


注意:二分查找不止适用于数组有序,数组无序的一些问题依然可以用二分查找,只要找出其中的规律,再在模板上进行适当修改即可;


二分查找模板有3种:
(1)朴素的二分模板;

(2)查找左边界的二分模板;

(3)查找右边界的二分模板;


一、二分查找

1.1 题目描述

描述:

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1


提示:

  1. 你可以假设 nums 中的所有元素是不重复的。
  2. n 将在 [1, 10000]之间。
  3. nums 的每个元素都将在 [-9999, 9999]之间。

示例1:


实例2:


1.2 题目解析

1.2.1 算法原理

本题我们采用二分查找的方法进行解决;

解题步骤:

步骤一: 首先定义 left , right 指针,分别指向数组的左右区间。

步骤二:找到待查找区间的中间点 mid ,找到之后分三种情况讨论:

情况1: arr[mid] == target 说明正好找到,返回 mid 的值;

情况2:arr[mid] > target 说明 [mid, right] 这段区间都是⼤于 target 的,因此舍

去右边区间,在左边 [left, mid -1] 的区间继续查找,即让 right = mid - 1 ,然后重复 2 过程;

情况3:arr[mid] < target 说明 [left, mid] 这段区间的值都是⼩于 target 的,因此舍去左边区间,在右边 [mid + 1, right] 区间继续查找,即让 left = mid + 1 ,然后重复 2 过程;


步骤三:

当 left 与 right 错开时,说明整个区间都没有这个数,返回 -1 。

1.2.2 代码编写

代码解析:


二、在排序数组中查找元素的第一个和最后一个位置

2.1 题目描述

描述:

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。


提示:

  • 0 <= nums.length <= 105
  • -109 <= nums[i] <= 109
  • nums 是一个非递减数组
  • -109 <= target <= 109

示例1:


示例2:


示例3:


2.2 题目解析

2.2.1 算法原理

算法思路:
用的还是二分思想,就是根据数据的性质,在某种判断条件下将区间一分为二,然后舍去其中一个区间,然后再另一个区间内查找。

方便叙述,寻找左边界思路:


寻找左边界思路:

我们注意到以左边界划分的两个区间的特点:

(1)左边区间[left,resLeft - 1]都是小于x的;

(2)右边区间(包括左边界)[resLeft,right]都是大于等于x的;

因此,关于mid的落点,我们可以分为下面两种情况:

(1)当mid落在[left,resLeft - 1]区间的时候,也就是 arr[mid] <target。

说明[left,mid]都是可以舍去的,此时更新left到mid + 1的位置,继续在[mid + 1,right]上寻找左边界;

(2)当mid落在 [resLeft,right]的区间的时候,也就是arr[mid] >= target。

说明[mid + l,right](因为mid可能是最终结果,不能舍去)是可以舍去的,此时更新right到mid的位置,继续在[left,mid]上寻找左边界;

由此,就可以通过二分,来快速寻找左边界;


注意:这里找中间元素需要向下取整。

因为后续移动左右指针的时候:

(1)左指针: left = mid + 1,是会向后移动的,因此区间是会缩小的;

(2)右指针:right = mid ,可能会原地踏步(比如:如果向上取整的话,如果剩下1,2两个元素,left == 1,right == 2 , mid == 2。更新区间之后,left,right,mid的值没有改变,就会陷入死循环)。

因此一定要注意,当right = mid的时候,要向下取整。

寻找左边界模板:

while(left < right)

{

     int mid = left + (right - left)/ 2;

     if(......)      left = mid + 1;

     else         right = mid;

}


寻找右边界思路:

用resRight表示右边界;

我们注意到右边界的特点:

(1)左边区间 (包括右边界)[left,resRight]都是小于等于x的;

(2)右边区间[resRight + 1,right]都是大于的;

因此,关于mid的落点,我们可以分为下面两种情况:

情况(1):当mid落在[left,resRight了区间的时候,说明([left,mid - 1]( mid 不可以舍去,因为有可能是最终结果)都是可以舍去的,此时更新left 到mid的位置。

情况(2):当mid 落在「resRightt'i, right]的区间的时候,说明[mid,right]内的元素是可以舍去的,此时更新right到mid - 1的位置;

由此,就可以通过分,来快速寻找右边界;


注意:这里找中间元素需要向上取整。

因为后续移动左右指针的时候:

(1)左指针:left = mid,可能会原地踏步(比如:如果向下取整的话,如果剩下1,2两个元素,left == 1,right == 2,mid == 1。更新区间之后,left,right,mid的值没有改变,就会陷入死循环)。

(2)右指针:right = mid - 1,是会向前移动的,因此区间是会缩小的;因此一定要注意,当right = mid的时候,要向下取整。

因此一定要注意,当 right = mid 的时候,要向下取整。
寻找右边界模板:

while(left < right)

{

     int mid = left + (right - left + 1) / 2;

     if(......)      left = mid ;

     else         right = mid - 1;

}


二分查找算法总结:
请大家一定不要觉得背下模板就能解决所有二分问题。二分问题最重要的就是要分析题意,然后确定要搜索的区间,根据分析问题来写出二分查找算法的代码。

要分析题意,确定搜索区间,不要死记模板,不要看左闭右开什么乱七八糟的题解要分析题意,确定搜索区间,不要死记模板,不要看左闭右开什么乱七八糟的题解要分析题意,确定搜索区间,不要死记模板,不要看左闭右开什么乱七八糟的题解重要的事情说三遍。


模板记忆技巧:

1.关于什么时候用三段式,还是二段式中的某一个,一定不要强行去用,而是通过具体的问题分析情况,根据查找区间的变化确定指针的转移过程,从而选择一个模板。

2.当选择两段式的模板时:

在求mid的时候,只有right - 1的情况下,才会向上取整(也就是+1取中间数)


2.2.2 代码编写


总结

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值