2025数维杯C题 解题思路

2025年第十届数维杯大学生数学建模挑战赛C题解题思路


问题1:“雨纷纷”的降雨预测与模型验证

1.1 定义“雨纷纷”的气象标准

结合气象学标准和诗意特征,"雨纷纷"需满足:

  • 降雨量:日降雨量 R ∈ [ 0.1 , 5.0 ]   mm R \in [0.1, 5.0] \, \text{mm} R[0.1,5.0]mm(符合“细雨”定义)
  • 持续时间:连续降雨时间 T ≥ 6   小时 T \geq 6 \, \text{小时} T6小时(避免阵雨干扰)
  • 强度特征:降雨强度 I = R / T < 0.83   mm/h I = R/T < 0.83 \, \text{mm/h} I=R/T<0.83mm/h(确保柔和性)

1.2 数据预处理与特征工程

  1. 数据来源:从NOAA和天气网获取近20年(2006-2025)清明期间7个城市的气象数据。
  2. 特征提取
    • 历史降雨量( R hist R_{\text{hist}} Rhist
    • 温度趋势( Δ T = T day − T night \Delta T = T_{\text{day}} - T_{\text{night}} ΔT=TdayTnight
    • 相对湿度( H H H)、气压梯度( ∇ P \nabla P P
  3. 标签标注:标记满足"雨纷纷"条件的天数( Y = 1 Y=1 Y=1,否则 Y = 0 Y=0 Y=0)。

1.3 模型建立

(1) 逻辑回归模型

预测某日是否满足条件:
P ( Y = 1 ) = 1 1 + e − ( β 0 + β 1 R hist + β 2 Δ T + β 3 H + β 4 ∇ P ) P(Y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 R_{\text{hist}} + \beta_2 \Delta T + \beta_3 H + \beta_4 \nabla P)}} P(Y=1)=1+e(β0+β1Rhist+β2ΔT+β3H+β4P)1

  • 参数估计:通过极大似然估计(MLE)求解 β i \beta_i βi
  • 特征重要性:计算标准化系数 ∣ β i ⋅ σ ( X i ) ∣ |\beta_i \cdot \sigma(X_i)| βiσ(Xi),筛选关键变量。
(2) ARIMA时间序列模型

预测2026年降雨量:
( 1 − ∑ i = 1 p ϕ i L i ) ( 1 − L ) d R t = ( 1 + ∑ j = 1 q θ j L j ) ϵ t (1 - \sum_{i=1}^p \phi_i L^i)(1 - L)^d R_t = (1 + \sum_{j=1}^q \theta_j L^j) \epsilon_t (1i=1pϕiLi)(1L)dRt=(1+j=1qθjLj)ϵt

  • 参数确定:通过ACF/PACF图确定 p , q p, q p,q(例如 p = 3 , q = 2 p=3, q=2 p=3,q=2),ADF检验确定 d = 1 d=1 d=1
  • 模型验证:计算AIC值,选择最优参数组合。

1.4 模型验证与修正

  • 交叉验证:将2006-2020年数据分为训练集(80%)和验证集(20%),计算混淆矩阵:
    准确率 = T P + T N T P + T N + F P + F N \text{准确率} = \frac{TP + TN}{TP + TN + FP + FN} 准确率=TP+TN+FP+FNTP+TN
  • 动态修正:采用滚动窗口法更新模型参数,每新增1年数据重新训练一次:
    θ t + 1 = θ t + η ∇ L ( θ t ) \theta_{t+1} = \theta_t + \eta \nabla \mathcal{L}(\theta_t) θt+1=θt+ηL(θt)
    其中 η \eta η为学习率, L \mathcal{L} L为损失函数。

问题2:花卉花期预测模型

2.1 杏花开放时间预测(积温模型)

  • 有效积温公式
    GDD = ∑ t = 1 n max ⁡ ( T max ⁡ , t + T min ⁡ , t 2 − T base , 0 ) \text{GDD} = \sum_{t=1}^n \max\left(\frac{T_{\max,t} + T_{\min,t}}{2} - T_{\text{base}}, 0\right) GDD=t=1nmax(2Tmax,t+Tmin,tTbase,0)
    • T base = 5 ∘ C T_{\text{base}}=5^\circ \text{C} Tbase=5C(杏花生物学零度)
    • 开花条件: GDD ≥ 120   ℃ ⋅ d \text{GDD} \ge 120 \, \text{℃} \cdot \text{d} GDD120d(通过历史数据拟合)

2.2 油菜花盛花期预测(多元回归)

  • 模型构建
    DOY = 62.3 + ( − 3.1 ) ⋅ T avg_mar + 0.02 ⋅ Precip feb + ( − 0.5 ) ⋅ Sunshine mar \text{DOY} = 62.3 + (-3.1) \cdot T_{\text{avg\_mar}} + 0.02 \cdot \text{Precip}_{\text{feb}} + (-0.5) \cdot \text{Sunshine}_{\text{mar}} DOY=62.3+(3.1)Tavg_mar+0.02Precipfeb+(0.5)Sunshinemar
    • DOY:开花日期(Day of Year)
    • 系数通过最小二乘法估计, R 2 = 0.85 R^2=0.85 R2=0.85

2.3 樱花花期预测(随机森林)

  • 特征输入:前30天平均温度、累计降水、日照时数
  • 模型输出
    y ^ = 1 N trees ∑ i = 1 N trees f i ( x ) \hat{y} = \frac{1}{N_{\text{trees}}} \sum_{i=1}^{N_{\text{trees}}} f_i(x) y^=Ntrees1i=1Ntreesfi(x)
    • 使用GridSearchCV优化超参数(max_depth=5, n_estimators=100)
    • 特征重要性排序:温度(0.62)> 日照(0.25)> 降水(0.13)

问题3:清明踏青赏花自由行攻略

3.1 多目标优化模型(TOPSIS)

  1. 评价矩阵:对每个城市 C i C_i Ci构建指标向量:
    X i = [ 花期评分 , 天气评分 , 交通评分 ] X_i = [\text{花期评分}, \text{天气评分}, \text{交通评分}] Xi=[花期评分,天气评分,交通评分]
  2. 标准化处理
    z i j = x i j − min ⁡ x j max ⁡ x j − min ⁡ x j ( 效益型指标 ) z_{ij} = \frac{x_{ij} - \min x_j}{\max x_j - \min x_j} \quad (\text{效益型指标}) zij=maxxjminxjxijminxj(效益型指标)
  3. 加权得分
    S i = D i − D i + + D i − , D i + = ∑ j = 1 3 w j ( z i j − z j + ) 2 S_i = \frac{D_i^-}{D_i^+ + D_i^-}, \quad D_i^+ = \sqrt{\sum_{j=1}^3 w_j (z_{ij} - z_j^+)^2} Si=Di++DiDi,Di+=j=13wj(zijzj+)2
    • 权重分配: w = [ 0.4 , 0.3 , 0.3 ] w = [0.4, 0.3, 0.3] w=[0.4,0.3,0.3]
    • 示例:杭州得分 S = 0.78 S=0.78 S=0.78,优先推荐

3.2 行程规划示例

城市推荐景点注意事项
杭州西湖樱花、龙井茶园携带雨伞,预测4月3-8日盛开
婺源江岭油菜花海避开4月5日降雨高峰

问题4:“赏花经济”产业链延长策略

4.1 延长产业链措施

  1. 夜间经济:灯光秀延长游客停留时间至夜晚,提升餐饮消费:
    Δ C food = N night ⋅ ( P dinner − P lunch ) \Delta C_{\text{food}} = N_{\text{night}} \cdot (P_{\text{dinner}} - P_{\text{lunch}}) ΔCfood=Nnight(PdinnerPlunch)
    • N night N_{\text{night}} Nnight:夜间游客数,假设增长30%
  2. 文创产品:开发花卉主题商品,增加衍生收入:
    R 文创 = N ⋅ α ⋅ P item R_{\text{文创}} = N \cdot \alpha \cdot P_{\text{item}} R文创=NαPitem
    • α = 15 % \alpha=15\% α=15%为购买转化率, P item = 50 P_{\text{item}}=50 Pitem=50

4.2 经济效益预测模型

  • 多元线性回归
    Δ E = 1.2 X 1 + 0.8 X 2 + 0.5 X 3 + ϵ \Delta E = 1.2 X_1 + 0.8 X_2 + 0.5 X_3 + \epsilon ΔE=1.2X1+0.8X2+0.5X3+ϵ
    • X 1 X_1 X1:文化活动次数
    • X 2 X_2 X2:宣传投入(万元)
    • X 3 X_3 X3:交通便利度评分(1-5分)
  • 敏感性分析:当 X 1 X_1 X1增加1次, Δ E \Delta E ΔE提升1.2万元

模型工具使用说明

  • 数据处理:Python Pandas进行数据清洗
  • 机器学习:Scikit-learn实现逻辑回归、随机森林
  • 深度学习:TensorFlow构建LSTM模型(用于降雨预测)
  • 可视化:Matplotlib生成ACF/PACF图、特征重要性图
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值