2025年第十届数维杯大学生数学建模挑战赛C题解题思路
问题1:“雨纷纷”的降雨预测与模型验证
1.1 定义“雨纷纷”的气象标准
结合气象学标准和诗意特征,"雨纷纷"需满足:
- 降雨量:日降雨量 R ∈ [ 0.1 , 5.0 ] mm R \in [0.1, 5.0] \, \text{mm} R∈[0.1,5.0]mm(符合“细雨”定义)
- 持续时间:连续降雨时间 T ≥ 6 小时 T \geq 6 \, \text{小时} T≥6小时(避免阵雨干扰)
- 强度特征:降雨强度 I = R / T < 0.83 mm/h I = R/T < 0.83 \, \text{mm/h} I=R/T<0.83mm/h(确保柔和性)
1.2 数据预处理与特征工程
- 数据来源:从NOAA和天气网获取近20年(2006-2025)清明期间7个城市的气象数据。
- 特征提取:
- 历史降雨量( R hist R_{\text{hist}} Rhist)
- 温度趋势( Δ T = T day − T night \Delta T = T_{\text{day}} - T_{\text{night}} ΔT=Tday−Tnight)
- 相对湿度( H H H)、气压梯度( ∇ P \nabla P ∇P)
- 标签标注:标记满足"雨纷纷"条件的天数( Y = 1 Y=1 Y=1,否则 Y = 0 Y=0 Y=0)。
1.3 模型建立
(1) 逻辑回归模型
预测某日是否满足条件:
P
(
Y
=
1
)
=
1
1
+
e
−
(
β
0
+
β
1
R
hist
+
β
2
Δ
T
+
β
3
H
+
β
4
∇
P
)
P(Y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 R_{\text{hist}} + \beta_2 \Delta T + \beta_3 H + \beta_4 \nabla P)}}
P(Y=1)=1+e−(β0+β1Rhist+β2ΔT+β3H+β4∇P)1
- 参数估计:通过极大似然估计(MLE)求解 β i \beta_i βi。
- 特征重要性:计算标准化系数 ∣ β i ⋅ σ ( X i ) ∣ |\beta_i \cdot \sigma(X_i)| ∣βi⋅σ(Xi)∣,筛选关键变量。
(2) ARIMA时间序列模型
预测2026年降雨量:
(
1
−
∑
i
=
1
p
ϕ
i
L
i
)
(
1
−
L
)
d
R
t
=
(
1
+
∑
j
=
1
q
θ
j
L
j
)
ϵ
t
(1 - \sum_{i=1}^p \phi_i L^i)(1 - L)^d R_t = (1 + \sum_{j=1}^q \theta_j L^j) \epsilon_t
(1−i=1∑pϕiLi)(1−L)dRt=(1+j=1∑qθjLj)ϵt
- 参数确定:通过ACF/PACF图确定 p , q p, q p,q(例如 p = 3 , q = 2 p=3, q=2 p=3,q=2),ADF检验确定 d = 1 d=1 d=1。
- 模型验证:计算AIC值,选择最优参数组合。
1.4 模型验证与修正
- 交叉验证:将2006-2020年数据分为训练集(80%)和验证集(20%),计算混淆矩阵:
准确率 = T P + T N T P + T N + F P + F N \text{准确率} = \frac{TP + TN}{TP + TN + FP + FN} 准确率=TP+TN+FP+FNTP+TN - 动态修正:采用滚动窗口法更新模型参数,每新增1年数据重新训练一次:
θ t + 1 = θ t + η ∇ L ( θ t ) \theta_{t+1} = \theta_t + \eta \nabla \mathcal{L}(\theta_t) θt+1=θt+η∇L(θt)
其中 η \eta η为学习率, L \mathcal{L} L为损失函数。
问题2:花卉花期预测模型
2.1 杏花开放时间预测(积温模型)
- 有效积温公式:
GDD = ∑ t = 1 n max ( T max , t + T min , t 2 − T base , 0 ) \text{GDD} = \sum_{t=1}^n \max\left(\frac{T_{\max,t} + T_{\min,t}}{2} - T_{\text{base}}, 0\right) GDD=t=1∑nmax(2Tmax,t+Tmin,t−Tbase,0)- T base = 5 ∘ C T_{\text{base}}=5^\circ \text{C} Tbase=5∘C(杏花生物学零度)
- 开花条件: GDD ≥ 120 ℃ ⋅ d \text{GDD} \ge 120 \, \text{℃} \cdot \text{d} GDD≥120℃⋅d(通过历史数据拟合)
2.2 油菜花盛花期预测(多元回归)
- 模型构建:
DOY = 62.3 + ( − 3.1 ) ⋅ T avg_mar + 0.02 ⋅ Precip feb + ( − 0.5 ) ⋅ Sunshine mar \text{DOY} = 62.3 + (-3.1) \cdot T_{\text{avg\_mar}} + 0.02 \cdot \text{Precip}_{\text{feb}} + (-0.5) \cdot \text{Sunshine}_{\text{mar}} DOY=62.3+(−3.1)⋅Tavg_mar+0.02⋅Precipfeb+(−0.5)⋅Sunshinemar- DOY:开花日期(Day of Year)
- 系数通过最小二乘法估计, R 2 = 0.85 R^2=0.85 R2=0.85
2.3 樱花花期预测(随机森林)
- 特征输入:前30天平均温度、累计降水、日照时数
- 模型输出:
y ^ = 1 N trees ∑ i = 1 N trees f i ( x ) \hat{y} = \frac{1}{N_{\text{trees}}} \sum_{i=1}^{N_{\text{trees}}} f_i(x) y^=Ntrees1i=1∑Ntreesfi(x)- 使用GridSearchCV优化超参数(max_depth=5, n_estimators=100)
- 特征重要性排序:温度(0.62)> 日照(0.25)> 降水(0.13)
问题3:清明踏青赏花自由行攻略
3.1 多目标优化模型(TOPSIS)
- 评价矩阵:对每个城市
C
i
C_i
Ci构建指标向量:
X i = [ 花期评分 , 天气评分 , 交通评分 ] X_i = [\text{花期评分}, \text{天气评分}, \text{交通评分}] Xi=[花期评分,天气评分,交通评分] - 标准化处理:
z i j = x i j − min x j max x j − min x j ( 效益型指标 ) z_{ij} = \frac{x_{ij} - \min x_j}{\max x_j - \min x_j} \quad (\text{效益型指标}) zij=maxxj−minxjxij−minxj(效益型指标) - 加权得分:
S i = D i − D i + + D i − , D i + = ∑ j = 1 3 w j ( z i j − z j + ) 2 S_i = \frac{D_i^-}{D_i^+ + D_i^-}, \quad D_i^+ = \sqrt{\sum_{j=1}^3 w_j (z_{ij} - z_j^+)^2} Si=Di++Di−Di−,Di+=j=1∑3wj(zij−zj+)2- 权重分配: w = [ 0.4 , 0.3 , 0.3 ] w = [0.4, 0.3, 0.3] w=[0.4,0.3,0.3]
- 示例:杭州得分 S = 0.78 S=0.78 S=0.78,优先推荐
3.2 行程规划示例
城市 | 推荐景点 | 注意事项 |
---|---|---|
杭州 | 西湖樱花、龙井茶园 | 携带雨伞,预测4月3-8日盛开 |
婺源 | 江岭油菜花海 | 避开4月5日降雨高峰 |
问题4:“赏花经济”产业链延长策略
4.1 延长产业链措施
- 夜间经济:灯光秀延长游客停留时间至夜晚,提升餐饮消费:
Δ C food = N night ⋅ ( P dinner − P lunch ) \Delta C_{\text{food}} = N_{\text{night}} \cdot (P_{\text{dinner}} - P_{\text{lunch}}) ΔCfood=Nnight⋅(Pdinner−Plunch)- N night N_{\text{night}} Nnight:夜间游客数,假设增长30%
- 文创产品:开发花卉主题商品,增加衍生收入:
R 文创 = N ⋅ α ⋅ P item R_{\text{文创}} = N \cdot \alpha \cdot P_{\text{item}} R文创=N⋅α⋅Pitem- α = 15 % \alpha=15\% α=15%为购买转化率, P item = 50 P_{\text{item}}=50 Pitem=50元
4.2 经济效益预测模型
- 多元线性回归:
Δ E = 1.2 X 1 + 0.8 X 2 + 0.5 X 3 + ϵ \Delta E = 1.2 X_1 + 0.8 X_2 + 0.5 X_3 + \epsilon ΔE=1.2X1+0.8X2+0.5X3+ϵ- X 1 X_1 X1:文化活动次数
- X 2 X_2 X2:宣传投入(万元)
- X 3 X_3 X3:交通便利度评分(1-5分)
- 敏感性分析:当 X 1 X_1 X1增加1次, Δ E \Delta E ΔE提升1.2万元
模型工具使用说明
- 数据处理:Python Pandas进行数据清洗
- 机器学习:Scikit-learn实现逻辑回归、随机森林
- 深度学习:TensorFlow构建LSTM模型(用于降雨预测)
- 可视化:Matplotlib生成ACF/PACF图、特征重要性图