2025数维杯数学建模竞赛C题 清明时节雨纷纷 保姆级教程讲解|模型讲解

完整内容看文末名片获取

2025数维杯 C题保姆级教程思路分析

数维杯挑战赛 C题保姆级教程思路分析

下面我将以背景介绍、数据集分析、问题分析的步骤来给大家讲解C题的具体思路。

1 背景介绍

清明节(4月4日至6日)作为兼具自然节气与传统文化的重要节日,其天气特征(如“清明时节雨纷纷”)和花卉物候(如杏花、油菜花等花期)是踏青赏花活动的核心影响因素。题目要求从气象学、天气学、物候学角度出发,解决以下问题:

  1. 降雨预测​:界定“雨纷纷”的降雨量及持续时间,预测2026年清明假期七个城市(西安、吐鲁番等)是否会出现该天气,并验证模型。
  2. 花期预报​:建立2-3种花卉的开放时间预测模型,为赏花提供科学依据。
  3. 旅游攻略​:结合天气与花期预测,制定2026年清明自由行计划。
  4. 经济建议​:提出延长“赏花经济”产业链的具体措施,并量化其经济效益。

这里需要注意几点:1 数据驱动​:需依赖历史气象数据(如NOAA全球站点数据、天气网实时数据)和花期观测资料(学术论文、权威平台),需进行数据清洗与验证。2 跨学科融合​:需结合气象学(降雨分类、天气系统)、物候学(积温模型、花期预测)和经济学(产业链建模)知识。3 模型合理性​:需通过历史数据验证模型(如用近20年数据验证2025年预测结果),并说明如何通过实时数据修正模型(如贝叶斯更新)。4 技术透明性​:若使用AI工具(如LSTM、随机森林),需在报告中明确说明用途(如数据预处理、模型训练)及具体工具类型。5 实际应用导向​:旅游攻略需考虑天气与花期的动态匹配,经济建议需具可操作性(如品种培育、活动策划)。

2 数据集分析

题目给了这几个数据源:1 NOAA全球站点逐日气象数据​(1929年至今,CSV格式):包含温度、降水、风速等指标。2 天气网历史与实时数据​(1981年至今,三小时粒度):提供更细粒度的温度、降水、云量等。3 花期观测资料​(学术论文、权威平台):记录花卉开放时间、花期长度等。4 线上补充资料​(如中国天气网):辅助验证数据。

预处理注意事项:

  • 站点匹配​:需通过城市经纬度或名称匹配NOAA站点ID(可使用geopy库辅助)。
  • ​缺失处理​:对关键字段(如温度、降水)采用插值或历史均值填充。
  • ​时间对齐​:花期数据需与气象数据按年份和城市对齐。
  • ​特征选择​:结合文献(如参考文献[4]-[15])选择关键气象因子(如积温、降水频率)。

气象数据预处理(以NOAA为例)​​

目标​:清洗并整合城市气象数据,处理缺失值、异常值,提取关键特征。

import pandas as pd

import numpy as np

# 加载NOAA数据(示例:假设已下载西安站点数据,站点ID=545110)

data = pd.read_csv('545110.csv')

# 选择需要的列(根据NOAA数据字段)

columns = ['DATE', 'PRCP', 'TEMP', 'DEWP', 'WDSP', 'MAX', 'MIN']

data = data[columns]

# 处理日期格式

data['DATE'] = pd.to_datetime(data['DATE'], format='%Y-%m-%d')

# 处理缺失值:降水PRCP为NaN时填充为0,其他列线性插值

data['PRCP'] = data['PRCP'].fillna(0)

data = data.interpolate(method='linear')

# 过滤异常值:剔除温度不合理记录(如温度>50或<-30)

data = data[(data['TEMP'] > -30) & (data['TEMP'] < 50)]

# 计算日平均温度、温差等特征

data['TEMP_MEAN'] = (data['MAX'] + data['MIN']) / 2

data['TEMP_DIFF'] = data['MAX'] - data['MIN']

# 按城市合并数据(假设已处理其他城市数据)

cities = ['西安', '吐鲁番', '杭州'] # 其他城市类似

merged_data = pd.concat([data_xian, data_turpan, data_hangzhou], keys=cities)

merged_data.reset_index(level=0, inplace=True)

merged_data.rename(columns={'level_0': 'CITY'}, inplace=True)

# 输出预处理后数据

merged_data.to_csv('processed_weather.csv', index=False)

花期数据整合​

目标​:从文献或平台中提取花期数据,并与气象数据对齐。

# 假设从文献中收集了杭州樱花花期数据(示例)

bloom_data = {

'CITY': ['杭州', '杭州', '杭州'],

'YEAR': [2020, 2021, 2022],

'START_DATE': ['2020-03-25', '2021-03-28', '2022-03-22'],

'END_DATE': ['2020-04-10', '2021-04-12', '2022-04-08']

}

bloom_df = pd.DataFrame(bloom_data)

bloom_df['START_DATE'] = pd.to_datetime(bloom_df['START_DATE'])

bloom_df['END_DATE'] = pd.to_datetime(bloom_df['END_DATE'])

# 计算花期长度

bloom_df['BLOOM_DAYS'] = (bloom_df['END_DATE'] - bloom_df['START_DATE']).dt.days

# 合并气象数据与花期数据(按城市和年份)

merged_data['YEAR'] = merged_data['DATE'].dt.year

merged_with_bloom = pd.merge(

merged_data, 

bloom_df, 

how='left', 

on=['CITY', 'YEAR']

)

# 输出合并后的数据集

merged_with_bloom.to_csv('merged_weather_bloom.csv', index=False)

关键特征工程​

目标​:构建用于花期预测的气象特征。

# 计算积温(Growing Degree Days, GDD)

# 假设基础温度为5°C(不同花卉可能不同)

merged_with_bloom['GDD'] = np.maximum(merged_with_bloom['TEMP_MEAN'] - 5, 0)

# 滑动窗口特征:过去7天平均温度

merged_with_bloom['TEMP_7D_MEAN'] = (

merged_with_bloom.groupby('CITY')['TEMP_MEAN']

.rolling(window=7, min_periods=1)

.mean()

.reset_index(level=0, drop=True)

)

# 季节性特征:月份和季度

merged_with_bloom['MONTH'] = merged_with_bloom['DATE'].dt.month

merged_with_bloom['SEASON'] = (

merged_with_bloom['MONTH'].apply(lambda x: (x % 12 + 3) // 3)

)

# 标准化数值特征(用于机器学习模型)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

numeric_cols = ['PRCP', 'TEMP_MEAN', 'GDD', 'TEMP_7D_MEAN']

merged_with_bloom[numeric_cols] = scaler.fit_transform(merged_with_bloom[numeric_cols])

3 问题分析

问题一分析与求解:

建模思路​:

  1. 定义“雨纷纷”的气象标准​:量化其降雨量区间与持续时间范围。
  2. ​预测2026年清明假期七个城市的“雨纷纷”概率。
  3. ​验证模型​:利用近20年历史数据验证模型合理性。
  4. ​动态修正​:提出基于实时天气数据的模型更新方法。

建模过程:

其中更详细的思路、各题目思路、代码、讲解视频、成品论文及其他相关内容,可以看下方名片获取:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值