完整内容看文末名片获取
2025数维杯 C题保姆级教程思路分析
数维杯挑战赛 C题保姆级教程思路分析
下面我将以背景介绍、数据集分析、问题分析的步骤来给大家讲解C题的具体思路。
1 背景介绍
清明节(4月4日至6日)作为兼具自然节气与传统文化的重要节日,其天气特征(如“清明时节雨纷纷”)和花卉物候(如杏花、油菜花等花期)是踏青赏花活动的核心影响因素。题目要求从气象学、天气学、物候学角度出发,解决以下问题:
- 降雨预测:界定“雨纷纷”的降雨量及持续时间,预测2026年清明假期七个城市(西安、吐鲁番等)是否会出现该天气,并验证模型。
- 花期预报:建立2-3种花卉的开放时间预测模型,为赏花提供科学依据。
- 旅游攻略:结合天气与花期预测,制定2026年清明自由行计划。
- 经济建议:提出延长“赏花经济”产业链的具体措施,并量化其经济效益。
这里需要注意几点:1 数据驱动:需依赖历史气象数据(如NOAA全球站点数据、天气网实时数据)和花期观测资料(学术论文、权威平台),需进行数据清洗与验证。2 跨学科融合:需结合气象学(降雨分类、天气系统)、物候学(积温模型、花期预测)和经济学(产业链建模)知识。3 模型合理性:需通过历史数据验证模型(如用近20年数据验证2025年预测结果),并说明如何通过实时数据修正模型(如贝叶斯更新)。4 技术透明性:若使用AI工具(如LSTM、随机森林),需在报告中明确说明用途(如数据预处理、模型训练)及具体工具类型。5 实际应用导向:旅游攻略需考虑天气与花期的动态匹配,经济建议需具可操作性(如品种培育、活动策划)。
2 数据集分析
题目给了这几个数据源:1 NOAA全球站点逐日气象数据(1929年至今,CSV格式):包含温度、降水、风速等指标。2 天气网历史与实时数据(1981年至今,三小时粒度):提供更细粒度的温度、降水、云量等。3 花期观测资料(学术论文、权威平台):记录花卉开放时间、花期长度等。4 线上补充资料(如中国天气网):辅助验证数据。
预处理注意事项:
- 站点匹配:需通过城市经纬度或名称匹配NOAA站点ID(可使用geopy库辅助)。
- 缺失处理:对关键字段(如温度、降水)采用插值或历史均值填充。
- 时间对齐:花期数据需与气象数据按年份和城市对齐。
- 特征选择:结合文献(如参考文献[4]-[15])选择关键气象因子(如积温、降水频率)。
气象数据预处理(以NOAA为例)
目标:清洗并整合城市气象数据,处理缺失值、异常值,提取关键特征。
import pandas as pd
import numpy as np
# 加载NOAA数据(示例:假设已下载西安站点数据,站点ID=545110)
data = pd.read_csv('545110.csv')
# 选择需要的列(根据NOAA数据字段)
columns = ['DATE', 'PRCP', 'TEMP', 'DEWP', 'WDSP', 'MAX', 'MIN']
data = data[columns]
# 处理日期格式
data['DATE'] = pd.to_datetime(data['DATE'], format='%Y-%m-%d')
# 处理缺失值:降水PRCP为NaN时填充为0,其他列线性插值
data['PRCP'] = data['PRCP'].fillna(0)
data = data.interpolate(method='linear')
# 过滤异常值:剔除温度不合理记录(如温度>50或<-30)
data = data[(data['TEMP'] > -30) & (data['TEMP'] < 50)]
# 计算日平均温度、温差等特征
data['TEMP_MEAN'] = (data['MAX'] + data['MIN']) / 2
data['TEMP_DIFF'] = data['MAX'] - data['MIN']
# 按城市合并数据(假设已处理其他城市数据)
cities = ['西安', '吐鲁番', '杭州'] # 其他城市类似
merged_data = pd.concat([data_xian, data_turpan, data_hangzhou], keys=cities)
merged_data.reset_index(level=0, inplace=True)
merged_data.rename(columns={'level_0': 'CITY'}, inplace=True)
# 输出预处理后数据
merged_data.to_csv('processed_weather.csv', index=False)
花期数据整合
目标:从文献或平台中提取花期数据,并与气象数据对齐。
# 假设从文献中收集了杭州樱花花期数据(示例)
bloom_data = {
'CITY': ['杭州', '杭州', '杭州'],
'YEAR': [2020, 2021, 2022],
'START_DATE': ['2020-03-25', '2021-03-28', '2022-03-22'],
'END_DATE': ['2020-04-10', '2021-04-12', '2022-04-08']
}
bloom_df = pd.DataFrame(bloom_data)
bloom_df['START_DATE'] = pd.to_datetime(bloom_df['START_DATE'])
bloom_df['END_DATE'] = pd.to_datetime(bloom_df['END_DATE'])
# 计算花期长度
bloom_df['BLOOM_DAYS'] = (bloom_df['END_DATE'] - bloom_df['START_DATE']).dt.days
# 合并气象数据与花期数据(按城市和年份)
merged_data['YEAR'] = merged_data['DATE'].dt.year
merged_with_bloom = pd.merge(
merged_data,
bloom_df,
how='left',
on=['CITY', 'YEAR']
)
# 输出合并后的数据集
merged_with_bloom.to_csv('merged_weather_bloom.csv', index=False)
关键特征工程
目标:构建用于花期预测的气象特征。
# 计算积温(Growing Degree Days, GDD)
# 假设基础温度为5°C(不同花卉可能不同)
merged_with_bloom['GDD'] = np.maximum(merged_with_bloom['TEMP_MEAN'] - 5, 0)
# 滑动窗口特征:过去7天平均温度
merged_with_bloom['TEMP_7D_MEAN'] = (
merged_with_bloom.groupby('CITY')['TEMP_MEAN']
.rolling(window=7, min_periods=1)
.mean()
.reset_index(level=0, drop=True)
)
# 季节性特征:月份和季度
merged_with_bloom['MONTH'] = merged_with_bloom['DATE'].dt.month
merged_with_bloom['SEASON'] = (
merged_with_bloom['MONTH'].apply(lambda x: (x % 12 + 3) // 3)
)
# 标准化数值特征(用于机器学习模型)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
numeric_cols = ['PRCP', 'TEMP_MEAN', 'GDD', 'TEMP_7D_MEAN']
merged_with_bloom[numeric_cols] = scaler.fit_transform(merged_with_bloom[numeric_cols])
3 问题分析
问题一分析与求解:
建模思路:
- 定义“雨纷纷”的气象标准:量化其降雨量区间与持续时间范围。
- 预测2026年清明假期七个城市的“雨纷纷”概率。
- 验证模型:利用近20年历史数据验证模型合理性。
- 动态修正:提出基于实时天气数据的模型更新方法。
建模过程:
其中更详细的思路、各题目思路、代码、讲解视频、成品论文及其他相关内容,可以看下方名片获取: