公民科学观测(Citizen Science Observations)是指普通公众参与科学研究的活动,通常涉及收集数据或进行观测,帮助科学家们扩大研究的范围和深度。在生态和环境科学领域,这种观测方法尤为常见,公众可以通过简单的工具或通过特定的手机应用记录并报告他们所观察到的生物种类、天气情况等信息。
“在这里,我们开发了一个深度学习模型,该模型使用来自加利福尼亚州的遥感图像进行训练,并结合50万次公民科学观测,可以绘制2000多种植物的分布图。”
在上文中,50万次公民科学观测可能是通过各种平台和项目收集的,如iNaturalist或eBird,这些平台允许用户上传他们的自然观察数据,包括植物、动物和其他自然现象。这些数据通常包括观测日期、位置、物种信息等,有时还伴有照片或其他描述。
这些公民科学数据与遥感数据的格式和应用存在显著差异:
- 数据格式:公民科学数据通常是非结构化的,如文本描述、照片等;而遥感数据则是高度结构化和量化的,如卫星图像的像元值。
- 空间和时间分辨率:公民科学数据的空间和时间分辨率可能较低,因为它们依赖于个体在特定时间和地点的随机观测;相反,遥感数据可以提供连续的时间序列和覆盖广阔地区的高分辨率图像。
- 应用:公民科学数据在物种识别和生态监测方面非常有用,能为研究提供地面真实性验证;而遥感数据则广泛应用于环境监测、资源管理和变化检测等领域,提供大范围和长时间序列的环境变化信息。
结合这两种数据源,可以极大增强研究的准确性和覆盖范围,尤其是在利用深度学习模型分析和预测植物分布变化时,两者的结合可以提供更为丰富和多维度的数据支持。