Python基于Django的反爬虫技术的设计【附源码、文档说明】

博主介绍:✌Java老徐、7年大厂程序员经历。全网粉丝12w+、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌

🍅文末获取源码联系🍅

👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟

2025年Java毕业设计选题推荐
Python基于Django的微博热搜、微博舆论可视化系统(V3.0)
基于Python Django的北极星招聘数据可视化系统

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及文档编写等相关问题都可以给我留言咨询,希望帮助更多的人

第一章 项目简介

Python基于Django的反爬虫技术的设计,借助Python技术、django框架来搭建一个简易网站,并选用MySQL数据库进行搭建。同时运用Python编写一个爬虫程序,用来爬取该网站的内容,以此率先实现爬虫的功能。在爬取成功之后,再对网站进行反爬虫的内容设计,从而实现实现网站数据的反爬虫功能。

第二章 系统演示视频

第三章 技术栈

前端:html、css、js

后端:Python Diango

MySQL数据库

第四章 系统设计与实现

4.1 系统应用架构

此次在网站的搭建上,是基于了B/S进行了整体网站的搭建工作,在整体的搭建过程中按照B/S结构是有服务器与浏览器的护工操作过程,具体的操作如下图所示:

4.2 系统总体功能设计

此次的总体设计包括了网站的设计,在网站的设计中运用了django来进行内容设计工作。通过python进行爬虫的设计以及反爬虫的设计,整体的设计最终的目的是达到完成反爬虫功能。

4.3 数据库数据结构设计

4.3.1 数据库的概念

在此次的系统以及爬虫程序的设计过程中均需要用到数据库。网站的搭建不用多说,所以的信息内容均需要数据库进行处理,而此次设计的爬虫程序中也需要对通过爬虫来存储数据,因此此次的数据库是设计的关键内容。数据库就是数据的仓库,能够将前端程序内的信息转化为数据存储在数据库中,并且在前端发出请求调取数据时,数据库能够及时的将数据从服务器端拷贝再反馈回用户端。所以数据库是整个系统中最为重要的一项工具。

4.3.2 数据库的概念设计

数据库是可以自顶而下、自下而上进行设计的,通过数据库的概念设计是方便数据的传输,可以通过用户到数据库、也可以通过数据库传递给用户。

4.3.3 关系型数据表设计

此次的数据库表设计主要是以简单的网站内容进行设计的,包括了管理员的设定以及信息的设定,具体的展示如下。

(1)管理员信息表

表4.1管理员用户信息表

(2)新闻信息表

表4.2直播信息表

4.4 核心功能模块设计与实现

4.4.1 模块实现

通过此次的开发设计最终可以正常进行爬虫操作,当此次爬取天气信息时,可以看到,爬虫程序能够爬取到近十天的天气信息,并且能够很好的进行信息的展示,当爬取新闻信息时,也能够正常的爬取到相关的新闻资讯内容,具体如下图所示:

IMG_256

图4.2爬取数据图

当加入了反爬虫的程序之后,在此通过爬虫进行数据的爬取,以天气为例,在第二次爬取时,天气数据已无法进行爬取,但新闻信息仍然可以获取,在保证天气数据反爬虫成功后,在此对信息数据进行反爬虫的设计,最终使得天气、新闻等等信息都完全实现反爬操作。最终实现的反爬虫结果界面如下:

IMG_256

图4.2反爬虫结果图

第五章 推荐阅读

基于Python的循环神经网络的情感分类系统设计与实现,附源码
Python基于人脸识别的实验室智能门禁系统的设计与实现,附源码
Python基于深度学习的电影评论情感分析可视化系统(全新升级版)
Java基于微信小程序的校园订餐系统
Java基于SpringBoot的在线学习平台
Python基于django框架的Boss直聘数据分析与可视化系统
基于Python的机器学习的文本分类系统
Python基于Flask的人脸识别上课考勤签到系统,可准确识别人脸
Java 基于 SpringBoot+Vue 的公司人事管理系统的研究与实现(V2.0)

第六章 源码获取:

大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻

👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟

Python毕业设计

Java 大学生实战精品项目

Java微信小程序精品项目

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及文档编写等相关问题都可以给我留言咨询,希望帮助更多的人

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Java老徐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值