一道数学归纳法的题目

一道数学归纳法的题目:

求证:对于 ∀ n ∈ N + \forall n \in N_+ nN+ n + 1 n ! n < e \frac{n+1}{\sqrt[n]{n!}}<e nn! n+1<e

原式等价于: ( n + 1 ) n < n ! ⋅ e n (n+1)^n<n!\cdot e^n (n+1)n<n!en

使用数学归纳法进行证明。

①当 n = 1 n=1 n=1 时, 2 < e 2<e 2<e 显然成立。

②当 2 ≤ n 2\le n 2n 时,需证明当 ( n + 1 ) n < n ! ⋅ e n (n+1)^n<n!\cdot e^n (n+1)n<n!en 成立时, ( n + 2 ) n + 1 < ( n + 1 ) ! ⋅ e n + 1 (n+2)^{n+1}<(n+1)!\cdot e^{n+1} (n+2)n+1<(n+1)!en+1 成立。

先用原式进行放缩:

( n + 1 ) ! e n + 1 = n ! e n ( n + 1 ) e > ( n + 1 ) n ( n + 1 ) e = ( n + 1 ) n + 1 e \begin{aligned} &\quad(n+1)!e^{n+1} \\ & =n!e^n(n+1)e\\ & >(n+1)^n(n+1)e\\ & =(n+1)^{n+1}e\end{aligned} (n+1)!en+1=n!en(n+1)e>(n+1)n(n+1)e=(n+1)n+1e

现在需证明: ( n + 1 ) n + 1 e > ( n + 2 ) n + 1 (n+1)^{n+1}e>(n+2)^{n+1} (n+1)n+1e>(n+2)n+1

看到两边的指数上都有 n + 1 n+1 n+1,考虑相除比较大小:

( n + 1 ) n + 1 e ( n + 2 ) n + 1 = ( n + 1 n + 2 ) n + 1 e = ( n + 2 − 1 n + 2 ) n + 1 e = ( 1 − 1 n + 2 ) n + 1 e > 2 3 e > 1 \begin{aligned} &\quad \frac{(n+1)^{n+1}e}{(n+2)^{n+1}} \\& =(\frac{n+1}{n+2})^{n+1} e \\& =(\frac{n+2-1}{n+2})^{n+1} e \\& =(1-\frac{1}{n+2})^{n+1} e \\& >\frac{2}{3} e\\& >1\end{aligned} (n+2)n+1(n+1)n+1e=(n+2n+1)n+1e=(n+2n+21)n+1e=(1n+21)n+1e>32e>1

所以 ( n + 1 ) n + 1 e > ( n + 2 ) n + 1 (n+1)^{n+1}e>(n+2)^{n+1} (n+1)n+1e>(n+2)n+1 成立,即原式成立。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金刚xkb

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值