样本相关系数公式的一点化简方法


注:本文章中部分引用来自人教A版数学选择性必修第三册8.1.2节。

一、引入

先来看一道例题:
现有 n = 5 n=5 n=5 的成对数据,分别为 ( 101 , 52 ) (101,52) (101,52) ( 102 , 54 ) (102,54) (102,54) ( 103 , 54 ) (103,54) (103,54) ( 104 , 55 ) (104,55) (104,55) ( 105 , 57 ) (105,57) (105,57) 。求样本相关系数 r r r

这一道题我硬算至少得5分钟。

是不是十分头疼,那就需要想一些简单的求法。

二、意义及公式

1、意义

引入一个适当的“数字特征”,对成对样本数据的相关程度进行定量分析。

在我们取出了若干个成对数据之后,可以将它们以散点图的形式画在坐标系中。那我们很容易想到,把画出来的所有点任意地平移,都不会影响它们的形状,也就是说,对这些数据的相关性没有影响。
在数学课本中,以 ( x ˉ , y ˉ ) (\bar x,\bar y) (xˉ,yˉ) 为坐标原点进行了平移,得到了 ( x i − x ˉ , y i − y ˉ ) (x_i-\bar x,y_i-\bar y) (xixˉ,yiyˉ) ,再根据一定的方法构造出了样本相关系数 r r r 的计算公式。

2、公式

r = ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) ∑ i = 1 n ( x i − x ˉ ) 2 ∑ i = 1 n ( y i − y ˉ ) 2 r=\frac {\sum\limits _{i=1}^{n}(x_i-\bar x)(y_i-\bar y)}{\sqrt{\sum\limits _{i=1}^{n}(x_i-\bar x)^2}\sqrt{\sum\limits _{i=1}^{n}(y_i-\bar y)^2}} r=i=1n(xixˉ)2 i=1n(yiyˉ)2 i=1n(xixˉ)(yiyˉ)
或经化简运算得到:
r = ∑ i = 1 n x i y i − n x ˉ y ˉ ∑ i = 1 n x i 2 − n x ˉ 2 ∑ i = 1 n y i 2 − n y ˉ 2 r=\frac {\sum\limits _{i=1}^{n}x_iy_i-n\bar x\bar y}{\sqrt{\sum\limits _{i=1}^{n}x_i^2-n\bar x^2}\sqrt{\sum\limits _{i=1}^{n}y_i^2-n\bar y^2}} r=i=1nxi2nxˉ2 i=1nyi2nyˉ2 i=1nxiyinxˉyˉ

三、化简方法

现在我们想,如果若干的很大的数据变成较小的数据,那么运算起来会十分快捷。那有什么办法使它们变小呢?

把画出来的所有点任意地平移

我们不妨把数据以 ( m i n { x i } , m i n { y i } ) (min\{x_i\},min\{y_i\}) (min{xi},min{yi}) 为原点进行平移,对任意的数据只保留比最小值大的那部分。为了公式的书写简介方便,我在后面的式子中以 x 1 x_1 x1 y 1 y_1 y1 为最小值,相当于我们拥有的数据已经从小到大排好了顺序。那么,得到的成对数据为 ( x i − x 1 , y i − y 1 ) (x_i-x_1,y_i-y_1) (xix1,yiy1) ,设为 ( a i , b i ) (a_i,b_i) (ai,bi)
易得 a ˉ = x ˉ − x 1 \bar a=\bar x-x_1 aˉ=xˉx1 b ˉ = y ˉ − y 1 \bar b=\bar y-y_1 bˉ=yˉy1
根据方差的性质,可得 S a 2 = S x 2 S_a^2=S_x^2 Sa2=Sx2 S b 2 = S y 2 S_b^2=S_y^2 Sb2=Sy2
由此,可以得到公式:
r = ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) ∑ i = 1 n ( x i − x ˉ ) 2 ∑ i = 1 n ( y i − y ˉ ) 2 r=\frac {\sum\limits _{i=1}^{n}(x_i-\bar x)(y_i-\bar y)}{\sqrt{\sum\limits _{i=1}^{n}(x_i-\bar x)^2}\sqrt{\sum\limits _{i=1}^{n}(y_i-\bar y)^2}} r=i=1n(xixˉ)2 i=1n(yiyˉ)2 i=1n(xixˉ)(yiyˉ)
= ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) n S x 2 n S y 2 \newline=\frac {\sum\limits _{i=1}^{n}(x_i-\bar x)(y_i-\bar y)}{\sqrt{nS_x^2}\sqrt{nS_y^2}} =nSx2 nSy2 i=1n(xixˉ)(yiyˉ)
= ∑ i = 1 n [ a i + x 1 − ( a ˉ + x 1 ) ] [ b i + y 1 − ( b ˉ + y 1 ) ] n S x 2 n S y 2 \newline=\frac {\sum\limits _{i=1}^{n}[a_i+x_1-(\bar a+x_1)][b_i+y_1-(\bar b+y_1)]}{\sqrt{nS_x^2}\sqrt{nS_y^2}} =nSx2 nSy2 i=1n[ai+x1(aˉ+x1)][bi+y1(bˉ+y1)]
= ∑ i = 1 n ( a i − a ˉ ) ( b i − b ˉ ) n S a 2 n S b 2 \newline=\frac {\sum\limits _{i=1}^{n}(a_i-\bar a)(b_i-\bar b)}{\sqrt{nS_a^2}\sqrt{nS_b^2}} =nSa2 nSb2 i=1n(aiaˉ)(bibˉ)

即:
r = ∑ i = 1 n ( a i − a ˉ ) ( b i − b ˉ ) ∑ i = 1 n ( a i − a ˉ ) 2 ∑ i = 1 n ( b i − b ˉ ) 2 r=\frac {\sum\limits _{i=1}^{n}(a_i-\bar a)(b_i-\bar b)}{\sqrt{\sum\limits _{i=1}^{n}(a_i-\bar a)^2}\sqrt{\sum\limits _{i=1}^{n}(b_i-\bar b)^2}} r=i=1n(aiaˉ)2 i=1n(bibˉ)2 i=1n(aiaˉ)(bibˉ)

或经化简运算得到:
r = ∑ i = 1 n a i b i − n a ˉ b ˉ ∑ i = 1 n a i 2 − n a ˉ 2 ∑ i = 1 n b i 2 − n b ˉ 2 r=\frac {\sum\limits _{i=1}^{n}a_ib_i-n\bar a\bar b}{\sqrt{\sum\limits _{i=1}^{n}a_i^2-n\bar a^2}\sqrt{\sum\limits _{i=1}^{n}b_i^2-n\bar b^2}} r=i=1nai2naˉ2 i=1nbi2nbˉ2 i=1naibinaˉbˉ

这样再看开头的例题,可以把成对数据转化为 ( 0 , 0 ) (0,0) (0,0) ( 1 , 2 ) (1,2) (1,2) ( 2 , 2 ) (2,2) (2,2) ( 3 , 3 ) (3,3) (3,3) ( 4 , 5 ) (4,5) (4,5) 。是不是简单了许多呢!
另外,如果你觉得 ( 0 , 0 ) (0,0) (0,0) 算起来有点难受,也可以把所有数据都加一,得到 ( 1 , 1 ) (1,1) (1,1) ( 2 , 3 ) (2,3) (2,3) ( 3 , 3 ) (3,3) (3,3) ( 4 , 4 ) (4,4) (4,4) ( 5 , 6 ) (5,6) (5,6) ,也是可以的。

四、总结

下面来看看这么写究竟快在哪里!

1、原方法

x ˉ = 103 \bar x=103 xˉ=103 y ˉ = 54.4 \bar y=54.4 yˉ=54.4 ∑ i = 1 5 x i 2 = 53055 \sum\limits _{i=1}^5x_i^2=53055 i=15xi2=53055 ∑ i = 1 5 y i 2 = 14810 \sum\limits _{i=1}^5y_i^2=14810 i=15yi2=14810 ∑ i = 1 5 x i y i = 28027 \sum\limits _{i=1}^5x_iy_i=28027 i=15xiyi=28027 。所以 r = 11 132 = 1 2 11 3 ≈ 0.957427 r=\frac{11}{\sqrt{132}}=\frac12\sqrt{\frac{11}{3}}\approx0.957427 r=132 11=21311 0.957427

2、简单方法

a ˉ = 3 \bar a=3 aˉ=3 b ˉ = 3.4 \bar b=3.4 bˉ=3.4 ∑ i = 1 5 a i 2 = 55 \sum\limits _{i=1}^5a_i^2=55 i=15ai2=55 ∑ i = 1 5 b i 2 = 71 \sum\limits _{i=1}^5b_i^2=71 i=15bi2=71 ∑ i = 1 5 a i b i = 62 \sum\limits _{i=1}^5a_ib_i=62 i=15aibi=62 。所以 r = 11 132 ≈ 0.957427 r=\frac{11}{\sqrt{132}}\approx0.957427 r=132 110.957427

简洁程度一目了然(* ̄︶ ̄)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金刚xkb

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值