裴蜀定理(又称贝祖定理)
简介:
裴蜀定理(贝祖定理)得名于法国数学家艾蒂安·裴蜀,说明了对任何整数 a , b 和它们的最大公约数 d,关于未知数x和y的线性不定方程(称为裴蜀等式):若 a , b 是整数,且gcd(a,b)=d,那么对于任意的整数x,y, ax+by都一定是d的倍数,即:ax+by=d*n,即ax+by=gcd(a,b)*n。
特别地,一定存在整数x,y使得ax+by=d,即ax+by=gcd(a,b)成立。
重要推论:a,b互质的充分必要条件是存在x,y使得ax+by=1
推广到n元
1.一定存在整数x1 , x2 , … , xn。使得:a1x1 + a2x2 + … + anxn= gcd(a1 , a2 , … , an) 成立;
2.任意的x1 , x2 , … , xn属于整数,都有:a1x1 + a2x2 + … + anxn= gcd(a1 , a2 , … , an) * n;
3.推论:a1 , a2 , … , an 互质的充分必要条件是存在x1 , x2 , … , xn使得a1x1 + a2x2 + … + an*xn= 1
4.判断n元不定方程是否有整数解的方法:对于方程 a1x1 + a2x2 + … + an*xn= z,只有满足 gcd(a1 , a2 , … , an) | z,方程才有整数解。
代码
#include<bits/stdc++.h>
using namespace std;
inline int gcd(int x, int y)
{
return y ? gcd(y, x%y) : x;
}
int main()
{
int n;
cin>>n;
int ans = 0;
for(int i=1; i<=n; i++)
{
int tmp;
cin>>tmp;
if(tmp < 0) tmp = -tmp;
ans = gcd(ans, tmp);
}
cout<<ans;
}