数论基础(四)

裴蜀定理(又称贝祖定理)

简介:

裴蜀定理(贝祖定理)得名于法国数学家艾蒂安·裴蜀,说明了对任何整数 a , b 和它们的最大公约数 d,关于未知数x和y的线性不定方程(称为裴蜀等式):若 a , b 是整数,且gcd(a,b)=d,那么对于任意的整数x,y, ax+by都一定是d的倍数,即:ax+by=d*n,即ax+by=gcd(a,b)*n。

特别地,一定存在整数x,y使得ax+by=d,即ax+by=gcd(a,b)成立。

重要推论:a,b互质的充分必要条件是存在x,y使得ax+by=1

推广到n元

1.一定存在整数x1 , x2 , … , xn。使得:a1x1 + a2x2 + … + anxn= gcd(a1 , a2 , … , an) 成立;

2.任意的x1 , x2 , … , xn属于整数,都有:a1x1 + a2x2 + … + anxn= gcd(a1 , a2 , … , an) * n;

3.推论:a1 , a2 , … , an 互质的充分必要条件是存在x1 , x2 , … , xn使得a1x1 + a2x2 + … + an*xn= 1

4.判断n元不定方程是否有整数解的方法:对于方程 a1x1 + a2x2 + … + an*xn= z,只有满足 gcd(a1 , a2 , … , an) | z,方程才有整数解。

代码

#include<bits/stdc++.h> 
using namespace std;
inline int gcd(int x, int y) 
{
    return y ? gcd(y, x%y) : x;
}

int main() 
{
	int n;
    cin>>n;
    int ans = 0;
    for(int i=1; i<=n; i++) 
	{
		int tmp;
        cin>>tmp;
        if(tmp < 0) tmp = -tmp;
        ans = gcd(ans, tmp);
    }
    cout<<ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值