线性不定方程,裴蜀定理

对于整数而言:

定义

关于 x x x的方程,形如 ∑ a i ⋅ x i = k \sum a_i\cdot x_i=k aixi=k,使得 a i , x i ∈ Z a_i,x_i\in\mathbb{Z} ai,xiZ的一组方程,是我们目前探讨的不定方程的定义。

其中有一个更为特殊的形式,即二元一次不定方程(Diophantine Equation):
a x + b y = c        ( a , b , c , x , y ∈ Z ) ax+by=c\;\;\;(a,b,c,x,y\in\mathbb{Z}) ax+by=c(a,b,c,x,yZ)

裴蜀定理(Bézout)

这里指的是关于不定方程的裴蜀定理。

裴蜀定理指的是,一组线性不定方程有整数解的充分必要条件是:
对于: ∑ a i ⋅ x i = k \sum a_i\cdot x_i=k aixi=k

有: gcd ⁡ i = 1 n ( a i ) ∣ k = gcd ⁡ ( a 1 , a 2 , . . . , a n ) ∣ k \overset{n}{\underset{i=1}\gcd}(a_i)|k=\gcd(a_1,a_2,...,a_n)|k i=1gcdn(ai)k=gcd(a1,a2,...,an)k

现在证明一下二元一次不定方程中的裴蜀定理,对于其他情况,可以仿照着给出类似的证明过程:

这个证明有许多种方法,这里选取了比较巧妙的一种。

g = gcd ⁡ ( a , b ) g=\gcd(a,b) g=gcd(a,b)

先证明必要性:
若有 a x + b y = c ax+by=c ax+by=c g ∣ a , g ∣ b g|a,g|b ga,gb
整除也就是说,提出来里面仍然是整数: g ( a x g + b y g ) = c g\left(\frac {ax}g+\frac{by}g\right)=c g(gax+gby)=c
因此 g ∣ c g|c gc

再证明充分性:
设取整数 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)时,使得有最小的正整数 s s s满足方程 a x + b y = s ax+by=s ax+by=s
显然 g ∣ s g|s gs
此外,设 a = q s + r ( 0 ≤ r < s ) a=qs+r(0\leq r<s) a=qs+r(0r<s),则有:
r = a − q s = a − q ( a x 0 + b y 0 ) = a − a q x 0 − b q y 0 = a ( 1 − q x 0 ) + b ( − q y 0 ) r=a-qs=a-q(ax_0+by_0)=a-aqx_0-bqy_0=a(1-qx_0)+b(-qy_0) r=aqs=aq(ax0+by0)=aaqx0bqy0=a(1qx0)+b(qy0)

这显然符合 a x + b y ax+by ax+by的形式:
= a x + b y =ax+by =ax+by

前面已经说过, s s s是满足 a x + b y ax+by ax+by形式的最小正整数,而 0 ≤ r < s 0\leq r<s 0r<s,因此 r = 0 r=0 r=0,即 s ∣ a s|a sa
同理: s ∣ b s|b sb

因此这充分说明 s s s a , b a,b a,b的任意公约数,则 s s s也有可能是最大公约数,那它必然整除最大公约数: s ∣ g s|g sg

注意到又有 g ∣ s g|s gs,因此 s = g s=g s=g

对于 a x + b y = c ax+by=c ax+by=c,只需要将 a x + b y = g ax+by=g ax+by=g整理成 a c x g + b c y g = c a\frac {cx} g+b\frac {cy} g=c agcx+bgcy=c的形式(由于 g ∣ c g|c gc)。

以上均假设a、b为正。
若a为负数,则令x=-x即可。b同理。

QED.

模板题
注意gcd(x,y)可能为负数,根据题设,带入gcd时带入绝对值即可,令对应的x=-x,不影响答案。

后记

于是皆大欢喜。

裴蜀定理(也称为贝祖定理)的核心内容是对任意整数$a$和$b$以及它们的最大公约数$d=\text{gcd}(a, b)$,存在整数$x$和$y$使得下述等式成立: $$ ax + by = d $$ 以下是与裴蜀定理相关的几个重要推论及其应用: --- ### 推论1:线性组合表示最大公约数 对于任意两个非零整数$a$和$b$,其最大公约数可以写成这两个数的线性组合形式。即存在整数$x$和$y$使: $$ \text{gcd}(a, b) = ax + by $$ 这一结论直接来源于裴蜀定理本身。 **应用**: 该性质可用于验证某些特定条件下是否存在解。例如,在密码学中的模逆运算需要找到一个整数$x$满足方程$ax \equiv 1 (\mod m)$,其中$\text{gcd}(a,m)=1$是必要条件。 --- ### 推论2:判断两数是否互素 若整数$a$和$b$满足存在整数$x$和$y$使得: $$ ax + by = 1 $$ 则表明$a$和$b$互质(即$\text{gcd}(a,b)=1$)。反之亦然。 **证明思路**: 假设$\text{gcd}(a,b)\neq 1$,那么必然无法构造出等于1的结果;只有当两者无公共因子时才可能实现此目标值。 **实际用途**: 用于简化分数或者检查多项式的系数之间关系等问题上非常有用。 --- ### 推论3:扩展欧几里得算法求特解 利用扩展欧几里得算法不仅可以计算两个正整数之间的GCD,还可以同时得到一组具体的$(x,y)$满足上述公式。 具体过程如下所示: 设$r_k=a$, $r_{k+1}=b$, 反复执行除法直到余项为0为止,则倒数第二个非零余项就是所求GCD; 再回代逐步确定每一步对应的商$q_i=r_j/r_{j+1}$, 最终得出相应参数值。 ```python def extended_gcd(a, b): if a == 0: return (b, 0, 1) else: g, x, y = extended_gcd(b % a, a) return (g, y - (b // a) * x, x) # 示例调用 result = extended_gcd(35, 15) print(f"gcd={result[0]}, x={result[1]}, y={result[2]}") # 输出 gcd=5, x=-1, y=2 ``` 这种技术广泛应用于解决不定方程组、同余类分析等领域。 --- ### 应用实例:最小正整数倍数问题 给定若干个整数$n_1,n_2,...n_k$,寻找能被这些数共同整除的第一个大于零的自然数$m$。 解答方法之一便是借助裴蜀定理思想构建相应的齐次线性丢番图方程式,并结合枚举试探完成任务。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值