说明
设有一个n*m方格的棋盘(1≤m,n≤100)。
求出该棋盘中包含多少个正方形、多少个长方形(不包括正方形)。
例如:
当n=2,m=3时
正方形的个数有8个,即边长为1的正方形有6个,边长为2的正方形有2个。
长方形的个数有10个:
2*1的长方形有4个;
1*2的长方形有3个;
3*1的长方形有2个;
3*2的长方形有1个。
输入格式
每个测试文件只包含一组测试数据,每组输入两个正整数n和m。
输出格式
对于每组输入数据,出该棋盘中包含的正方形个数和长方形个数。
样例
输入数据 1
2 3
输出数据 1
8 10
【思路】
这道题有规律可寻,正方形的个数=nm+(n-1)(m-1)+……+1*1;不难可以发现,如果用i跟j控制方格的格数,当i跟就j相等的时候,方格可以围成正方形,而当i不等于j时,方格可以围成长方形。
【代码】
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,m,ans1=0,ans2=0;
cin>>n>>m;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
if(i==j) ans1+=(n-i)*(m-j);
else ans2+=(n-i)*(m-j);
}
}
cout<<ans1<<" "<<ans2;
return 0;
}