1、题目描述
小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root
。
除了 root
之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。
给定二叉树的 root
。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。
示例 1:
输入: root = [3,2,3,null,3,null,1] 输出: 7 解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7
示例 2:
输入: root = [3,4,5,1,3,null,1] 输出: 9 解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9
2、初始思路
2.1 思路
本题是树的偷窃问题,同样按照动态规划的思路进行求解。
在确定递推公式时,考虑两种情况:
(1)不偷该节点,那么可以考虑是否要偷左右节点
node_n_rob = max(l_rob, l_n_rob)+ max(r_rob, r_n_rob)
(2)偷该节点,那么左右节点一定不偷
node_rob = node.val + l_n_rob + r_n_rob
根据上面的递推公式,下面要分析本题的遍历顺序。由于我们想要的是每个节点是否偷,因此,我们采用后序遍历(左->右->中)的顺序时,能够得到每个节点的最大值。
最后,确定本题的初始化,当节点为空时,可直接将该节点的值赋为:0,0
2.2 代码
根据上面的分析,本题的代码如下:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rob(self, root: Optional[TreeNode]) -> int:
def robTree(node):
if node == None:
return 0,0
l_rob, l_n_rob = robTree(node.left)
r_rob, r_n_rob = robTree(node.right)
node_rob = node.val + l_n_rob + r_n_rob
node_n_rob = max(l_n_rob, l_rob) + max(r_n_rob, r_rob)
return node_rob, node_n_rob
return max(robTree(root))