费马小定理

如果p是一个质数,a为任意自然数,则有 a^p\equiv a(mod p)

若 a,p互质,则有 a^{p-1}\equiv 1 (mod p)

证明

归纳法证明(从知乎上看到的证法,好妙!

当a=1时,结论显然成立  

假设  p | (a^p - a)  成立

则有  (a+1)^{p}-(a+1)=\sum_{k=0}^{p} C_{p}^{k} a^k-a-1=\sum_{k=1}^{p-1} C_{p}^{k}a^{k}+(a^p-a)

由于p为质数,且 C_{p}^{k}=\frac{p!}{k!(p-k!)} ,所以   p |C_{p}^{k}(1\leqslant k\leqslant p-1)

既 p|\sum_{k=1}^{p-1} C_{p}^{k}  ,又因为假设  p|(a^p-a)  成立

所以 p|(a+1)^p-(a+1) ,故对任意自然数 a , p | (a^p - a) 都成立。

而当( a , p ) = 1时 ,已知 p | (a^p - a)=p|(a^{p-1}-1)a 

因为 p 不整除 a , 所以  p|(a^{p-1}-1)

既 a^{p-1}\equiv 1 (mod p) 

应用

当模数为素数时配合快速幂可在时间复杂度为O(logN)的情况下求出乘法逆元

 a^{p-1}\equiv 1 (mod p)=a a^{p-2}\equiv 1(modp)

所以 a^{p-2} 就是我们所求的a关于模p的乘法逆元。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值