系列文章目录
第一章 RFM模型以及代码实现
第二章 帕累托分析模型以及代码实现
目录
前言
帕累托分析(Pareto Analysis)是一种基于帕累托原则(又称80/20法则)的数据分析方法,旨在通过识别和重点解决影响最大的关键问题,以实现资源优化和问题解决。这一法则被广泛应用于企业管理、质量管理等领域。以下是对帕累托分析的详细阐述:
一、模型概念:
帕累托分析是一种统计技术,用于区分对结果产生最大影响的有限数量的输入因素。这些因素可能是理想的,也可能是不理想的,但它们都对整体结果有着显著的影响。
二、框架与步骤:
帕累托分析的框架主要包括以下几个步骤:
- 定义问题或机会:明确分析的目标和范围,例如公司的销售额下降、客户投诉率上升等。
- 收集数据:收集与问题或机会相关的数据,包括数量、频率、时间、地点等,构建数据集。
- 分类和排序:将数据集分成若干类别,并对每个类别进行排序,确定每个类别的重要性和贡献度。
- 绘制帕累托图:将分类和排序的结果绘制成帕累托图,以直观地展示各类别之间的差异和重要性。帕累托图通常包括一个条形图和一个累积百分比折线图,条形图表示各类别的数量或频率,折线图表示累积百分比。
- 分析结果和制定计划:根据帕累托图的结果,确定影响最大的关键问题,并制定相应的解决方案和优化计划。
三、逻辑与原则:
帕累托分析的逻辑主要体现在以下几个方面:
- 集中资源解决影响最大的问题:通过识别和聚焦于最重要的因素,实现资源的高效利用。
- 数据驱动决策:依赖准确和完整的数据进行分析,提供量化的决策依据。
- 结果可视化:通过绘制帕累托图,使分析结果更加直观和易于理解。
四、代码实现:
注:Data数据在我上传的资源‘电子产品销售数据分析及RFM模型’中
data_user_amount=data.groupby('user_id').agg(amount_sum=('amount','sum')).sort_values('amount_sum',ascending=False).reset_index()
data_user_amount
#以user_id为准进行聚类,amount_sum为消费总金额,该代码旨在通过计算每一个user_id的消费总金额,并用sort_values对消费总金额进行降序排列,reset_index重置索引
data_user_amount['salary']=data_user_amount['amount_sum'].cumsum() #计算累计销售额
proportion=data_user_amount['salary']/data_user_amount['amount_sum'].sum()
#求累计销售总金额占总消费的百分比,旨在找到销售额80%的部分
key = proportion[proportion>0.8].index[0]#计算proportion80%以上的数量
print(f'消费80%以上的人群占比为{round(key/proportion.count(),4)}')
#### 累计销售额曲线图
plt.plot(data_user_amount.index,data_user_amount['salary'])
plt.xlabel('人数')
plt.ylabel('消费总额')
plt.title('消费总额趋势图')
plt.savefig('D:\picture\消费总额趋势图.png')
五、优点与缺点
-
优点:
- 简单直观,易于理解和应用。
- 帮助聚焦最重要的问题,提高工作效率。
- 数据驱动,提供量化的决策依据。
-
缺点:
- 仅适用于数据集中存在显著差异的情况。
- 可能忽略小但重要的因素。
- 需要准确的数据收集和分类。
六、应用实例
帕累托分析广泛应用于多个领域,如质量管理、销售分析、库存管理、客户管理等。以下是一些具体的应用实例:
- 质量管理:识别主要的缺陷来源,改进产品质量。例如,通过分析客户投诉数据,确定哪些问题是导致客户投诉的主要原因,并采取相应的改进措施。
- 销售分析:找出贡献最大的产品或客户,提高销售策略。例如,通过分析销售数据,确定哪些产品或客户对销售额的贡献最大,并优化销售策略以提高销售额。
- 库存管理:确定主要的库存项目,优化库存水平。例如,通过分析库存数据,确定哪些库存项目的数量最多或价值最高,并采取相应的管理措施以优化库存水平。
总结
综上所述,帕累托分析是一种简单而有效的数据分析方法,可以帮助企业和个人识别和解决最关键的问题,提高工作效率和成果。