文章目录
符号
η ξ δ ε φ α β γ π θ \eta\\ \xi\\ \delta\\ \varepsilon\\ \varphi\\ \alpha\\ \beta\\ \gamma\\ \pi\\ \theta\\ ηξδεφαβγπθ
隐函数存在定理:
设 D = { ( x , y ) ∣ a ≤ x ≤ b , − ∞ ≤ y ≤ + ∞ } , F ( x , y ) 在 D 上连续且 m ≤ F y ( x , y ) ≤ M , 设D=\{(x,y)|a\leq x\leq b,-\infty\leq y \leq+\infty\}, F(x,y)在D上连续且m\leq F_y(x,y)\leq M, 设D={(x,y)∣a≤x≤b,−∞≤y≤+∞},F(x,y)在D上连续且m≤Fy(x,y)≤M,
其中 0 ≤ m ≤ M , ( x , y ) ∈ D . 其中0\leq m\leq M,(x,y)\in D. 其中0≤m≤M,(x,y)∈D.
则存在唯一的连续函数 y = φ ( X ) . s t F ( x , φ ( X ) ) ≡ 0 , x ∈ [ a , b ] . 则存在唯一的连续函数y=\varphi(X).st F(x,\varphi(X)) \equiv0,x\in[a,b]. 则存在唯一的连续函数y=φ(X).stF(x,φ(X))≡0,x∈[a,b].
证明:
(1)确定距离空间,建立映射
在连续函数
C
[
a
,
b
]
C[a,b]
C[a,b]考虑映射:
(
T
φ
)
(
x
)
=
φ
(
x
)
−
1
M
F
(
x
,
φ
(
X
)
)
,
x
∈
[
a
,
b
]
.
(T\varphi)(x)=\varphi(x)-\frac{1}{M}F(x,\varphi(X)),x\in[a,b].
(Tφ)(x)=φ(x)−M1F(x,φ(X)),x∈[a,b].
则
T
T
T是
C
[
a
,
b
]
C[a,b]
C[a,b]到
C
[
a
,
b
]
C[a,b]
C[a,b]的映射。
(2)我们先证明连续函数空间 C [ a , b ] C[a,b] C[a,b]是完备的。
设 x n {x_n} xn是 C [ a , b ] C[a,b] C[a,b]的任意柯西列,由柯西列定义:
任意
ε
>
0
\varepsilon>0
ε>0,存在
N
≥
0
N\geq 0
N≥0,当
n
,
m
≥
N
n,m\geq N
n,m≥N时,对任意
t
0
∈
[
a
,
b
]
t_0\in[a,b]
t0∈[a,b],
∣
x
n
(
t
0
)
−
x
m
(
t
0
)
∣
≤
d
(
x
n
,
x
m
)
<
ε
.
|x_n(t_0)-x_m(t_0)|\leq d(x_n,x_m)<\varepsilon.
∣xn(t0)−xm(t0)∣≤d(xn,xm)<ε.
固定
t
0
t_0
t0时,
{
x
n
(
t
0
)
}
\{x_n(t_0)\}
{xn(t0)}是
R
R
R的柯西列。
利用**
R
R
R的完备性**(极限不会出去),存在
x
(
t
0
)
∈
R
x(t_0)\in R
x(t0)∈R,
s
t
lim
x
→
∞
x
n
(
t
0
)
=
x
(
0
)
st\lim_{x\rightarrow\infty}x_n(t_0)=x(0)
stx→∞limxn(t0)=x(0)
在上面的不等式中,
令
m
→
∞
m\rightarrow\infty
m→∞,则当
n
≥
N
n\geq N
n≥N时,
∣
x
n
(
t
0
)
−
x
m
(
t
0
)
∣
≤
ε
|x_n(t_0)-x_m(t_0)|\leq \varepsilon
∣xn(t0)−xm(t0)∣≤ε
定义
x
=
x
(
t
)
x=x(t)
x=x(t),
t
0
∈
[
a
,
b
]
t_0\in[a,b]
t0∈[a,b],当
n
≥
N
n\geq N
n≥N时,
∣
x
n
(
t
0
)
−
x
(
t
0
)
∣
≤
ε
|x_n(t_0)-x(t_0)|\leq \varepsilon
∣xn(t0)−x(t0)∣≤ε
即柯西列收敛。
(3)
压缩映射原理:
设 X X X是完备距离空间, T : X → X T:X\rightarrow X T:X→X是压缩映射,则 T T T有唯一的不动点,即存在唯一 x ‾ ∈ X \overline{x}\in X x∈X,
使得 T x ‾ = x ‾ T\overline{x}=\overline{x} Tx=x.
双A定理:
C [ a , b ] C[a,b] C[a,b]中的子集 A A A是列紧集当且仅当 A A A中函数是一致有界和等度连续的。
一致有界:
存在 K > 0 K>0 K>0, s t st st对每一点 t ∈ [ a , b ] t\in[a,b] t∈[a,b]及一切 x ∈ A x\in A x∈A,有 ∣ x ( t ) ∣ ≤ K |x(t)|\leq K ∣x(t)∣≤K.
等度连续:
对任意
ε
>
0
\varepsilon>0
ε>0,存在$ \delta\geq0
,
当
,当
,当|t_1-t_2|\leq\delta
时,对一切
时,对一切
时,对一切x\in A$,有:
∣
x
(
t
1
)
−
x
(
t
2
)
∣
≤
ε
.
|x(t_1)-x(t_2)|\leq \varepsilon.
∣x(t1)−x(t2)∣≤ε.
列紧集:
设 A A A时距离空间 X X X的子集,若 A A A中任意点列都必有一个 X X X 中的收敛子列,则称集合 A A A为列紧集。
紧集:
设 A A A是距离空间 X X X的子集,若存在一族开集 { G α ∣ α ∈ I } \{G_\alpha|\alpha\in I\} {Gα∣α∈I}, s t st st A ⊂ ⋃ α ∈ I G α A\subset \bigcup_{\alpha\in I}G_\alpha A⊂⋃α∈IGα,
则称开集 { G α ∣ α ∈ I } \{G_\alpha|\alpha\in I\} {Gα∣α∈I}是 A A A的一个开覆盖。
如果 A A A任意开覆盖必存在有限子覆盖,则称 A A A为紧集。
紧集的等价刻画:
**定理:**设 A A A是距离空间 X X X的子集,则 A A A是紧集当且仅当 A A A是列紧的闭集。
开集与闭集
距离空间中的任意开集可以表示成可数个闭集的并;
证明:
距离空间中的任意闭集可以表示成可数个开集的交;
证明:
A
=
A
‾
=
{
x
∣
d
(
x
,
A
)
=
0
}
=
⋂
n
=
1
∞
{
x
∣
d
(
x
,
A
)
<
1
n
}
A=\overline{A}=\{x|d(x,A)=0\}=\bigcap_{n=1}^\infty \{x|d(x,A)<\frac{1}{n}\}
A=A={x∣d(x,A)=0}=n=1⋂∞{x∣d(x,A)<n1}
赋范空间的定义
设
X
X
X是数域
K
K
K上的线性空间,若存在映射
∣
∣
⋅
∣
∣
||\cdot||
∣∣⋅∣∣:
X
→
R
X\rightarrow R
X→R满足
(
1
)
对任意
x
∈
X
,
∣
∣
X
∣
∣
≥
0
;
且
∣
∣
X
∣
∣
=
0
⇔
x
=
∅
;
(
非负性
)
(
2
)
对任意
x
∈
X
,
及
α
∈
K
,
∣
α
∣
∣
∣
x
∣
∣
;
(
正齐次性
)
(
3
)
对任意
x
,
y
∈
X
,
∣
∣
x
+
y
∣
∣
≤
∣
∣
x
∣
∣
+
∣
∣
y
∣
∣
.
(
三角不等式
)
\begin{aligned} &(1)对任意x\in X,||X||\geq0;且||X||=0\Leftrightarrow x=\emptyset;(非负性)\\ &(2)对任意x\in X,及\alpha\in K,|\alpha|||x||;(正齐次性)\\ &(3)对任意x,y\in X,||x+y||\leq||x||+||y||.(三角不等式) \end{aligned}
(1)对任意x∈X,∣∣X∣∣≥0;且∣∣X∣∣=0⇔x=∅;(非负性)(2)对任意x∈X,及α∈K,∣α∣∣∣x∣∣;(正齐次性)(3)对任意x,y∈X,∣∣x+y∣∣≤∣∣x∣∣+∣∣y∣∣.(三角不等式)
则称
∣
∣
⋅
∣
∣
||\cdot||
∣∣⋅∣∣为
X
X
X的一个范数,定义了范数的线性空间称为赋范线性空间,记为(
X
X
X,
∣
∣
⋅
∣
∣
||\cdot||
∣∣⋅∣∣),或简记为
X
X
X.
Minkowski不等式
设
p
≥
1
,
ξ
k
,
η
k
∈
C
,
(
k
=
1
,
2
,
⋯
)
p\geq1,\xi_k,\eta_k\in C,(k=1,2,\cdots)
p≥1,ξk,ηk∈C,(k=1,2,⋯)
则有
(
∑
k
=
1
∞
∣
ξ
k
+
η
k
∣
p
)
1
p
≤
(
∑
k
=
1
∞
∣
ξ
k
∣
p
)
1
p
+
(
∑
k
=
1
∞
∣
η
k
∣
p
)
1
p
(\sum_{k=1}^{\infty}|\xi_k+\eta_k|^p)^{\frac{1}{p}}\leq (\sum_{k=1}^{\infty}|\xi_k|^p)^{\frac{1}{p}} +(\sum_{k=1}^{\infty}|\eta_k|^p)^{\frac{1}{p}}
(k=1∑∞∣ξk+ηk∣p)p1≤(k=1∑∞∣ξk∣p)p1+(k=1∑∞∣ηk∣p)p1
且当右边的两个级数收敛时,左边的级数收敛。
Holder不等式
设
p
>
1
,
1
p
+
1
q
=
1
,
ξ
k
,
η
k
∈
C
,
(
k
=
1
,
2
,
⋯
)
p>1,\frac{1}{p}+\frac{1}{q}=1,\xi_k,\eta_k\in C,(k=1,2,\cdots)
p>1,p1+q1=1,ξk,ηk∈C,(k=1,2,⋯)
则有
∑
k
=
1
∞
∣
ξ
k
η
k
∣
≤
(
∑
k
=
1
∞
∣
ξ
k
∣
p
)
1
p
(
∑
k
=
1
∞
∣
η
k
∣
q
)
1
q
\sum_{k=1}^{\infty}|\xi_k\eta_k| \leq (\sum_{k=1}^{\infty}|\xi_k|^p)^{\frac{1}{p}} (\sum_{k=1}^{\infty}|\eta_k|^q)^{\frac{1}{q}}
k=1∑∞∣ξkηk∣≤(k=1∑∞∣ξk∣p)p1(k=1∑∞∣ηk∣q)q1
Banach空间:
Banach空间的定义:
设 ( X , ∣ ∣ ⋅ ∣ ∣ ) (X,||\cdot||) (X,∣∣⋅∣∣)是赋范空间, d d d是范数诱导的距离,若 ( X , d ) (X,d) (X,d)是完备的距离空间,则称 ( X , ∣ ∣ ⋅ ∣ ∣ ) (X,||\cdot||) (X,∣∣⋅∣∣)
为Banach空间。
赋范空间的级数:
设
{
x
n
}
\{x_n\}
{xn}是赋范空间
X
X
X中的点列,若它的前n项和
S
n
=
x
1
+
x
2
+
⋯
+
x
n
S_n=x_1+x_2+\cdots+x_n
Sn=x1+x2+⋯+xn
收敛,即存在
x
∈
X
x\in X
x∈X,使得
S
n
→
x
(
n
→
∞
)
S_n\rightarrow x(n\rightarrow\infty)
Sn→x(n→∞).则称
∑
n
=
1
∞
x
n
\sum_{n=1}^{\infty}x_n
∑n=1∞xn收敛。
并称 x x x为基数的和,记为 x = ∑ n = 1 ∞ x n x=\sum_{n=1}^{\infty}x_n x=∑n=1∞xn。
若 ∑ n = 1 ∞ ∣ ∣ x n ∣ ∣ \sum_{n=1}^{\infty}||x_n|| ∑n=1∞∣∣xn∣∣收敛,则称级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n ∑n=1∞xn绝对收敛。(正项级数)
Banach空间的性质:
设 X X X是赋范空间,则 X X X是Banach空间的充要条件是 X X X中的任一绝对收敛的级数都收敛。
证明:(必要性)
设 X X X是Banach空间, ∑ n = 1 x n ∞ \sum_{n=1}x_n^{\infty} ∑n=1xn∞绝对收敛。记 ∑ n = 1 x n ∞ \sum_{n=1}x_n^{\infty} ∑n=1xn∞的部分和数列为 { S n } \{S_n\} {Sn}.
由数项级数的柯西收敛准则,
对任意
ε
>
0
\varepsilon> 0
ε>0,存在
N
N
N,当
n
>
N
n>N
n>N时,对任意的正整数
p
p
p,
∣
∣
S
n
+
p
−
S
n
∣
∣
=
∣
∣
x
n
+
1
+
⋯
+
x
n
+
p
∣
∣
≤
∣
∣
x
n
+
1
∣
∣
+
⋯
+
∣
∣
x
n
+
p
∣
∣
<
ε
||S_{n+p}-S_n||=||x_{n+1}+\cdots+x_{n+p}|| \leq||x_{n+1}||+\cdots+||x_{n+p}||<\varepsilon
∣∣Sn+p−Sn∣∣=∣∣xn+1+⋯+xn+p∣∣≤∣∣xn+1∣∣+⋯+∣∣xn+p∣∣<ε
因此
S
n
{S_n}
Sn是
X
X
X中的柯西列,由完备性知
{
S
n
}
\{S_{n}\}
{Sn}收敛,即
∑
n
=
1
x
n
∞
\sum_{n=1}x_n^{\infty}
∑n=1xn∞收敛。
子空间的完备性:
设 X X X是Banach空间, E E E是 X X X的子空间,则 E E E是Banach空间的充要条件是 E E E为 X X X的闭子空间。
非闭子空间的例子:
设 P [ 1 , 0 ] P[1,0] P[1,0]是 [ 0 , 1 ] [0,1] [0,1]上的多项式全体,则 P [ 0 , 1 ] P[0,1] P[0,1]作为 C [ 0 , 1 ] C[0,1] C[0,1]的子空间不是Banach空间。
**证明:**令
p
n
(
t
)
=
∑
k
=
0
n
t
k
k
!
(
n
=
1
,
2
,
⋯
)
.
p_n(t)=\sum_{k=0}^{n}\frac{t^k}{k!}(n=1,2,\cdots).
pn(t)=k=0∑nk!tk(n=1,2,⋯).
并记
p
(
t
)
=
e
t
p(t)=e^t
p(t)=et.则
{
p
n
}
⊂
P
[
0
,
1
]
\{p_n\}\sub P[0,1]
{pn}⊂P[0,1],且
∣
∣
p
n
−
p
∣
∣
=
m
a
x
t
∈
[
0
,
1
]
∣
p
n
(
t
)
−
e
t
∣
=
m
a
x
t
∈
[
0
,
1
]
∣
∑
k
=
0
n
t
k
k
!
−
∑
k
=
0
∞
t
k
k
!
∣
||p_n-p||=max_{t\in[0,1]}|p_n(t)-e^t| =max_{t\in[0,1]}|\sum_{k=0}^n\frac{t^k}{k!}-\sum_{k=0}^{\infty}\frac{t^k}{k!}|
∣∣pn−p∣∣=maxt∈[0,1]∣pn(t)−et∣=maxt∈[0,1]∣k=0∑nk!tk−k=0∑∞k!tk∣
= m a x t ∈ [ 0 , 1 ] ∣ ∑ k = n + 1 ∞ t k k ! ∣ ≤ ∣ ∑ k = n + 1 ∞ 1 k ! ∣ → 0 ( n → ∞ ) . =max_{t\in[0,1]}|\sum_{k=n+1}^{\infty}\frac{t^k}{k!}| \leq |\sum_{k=n+1}^{\infty}\frac{1}{k!}| \rightarrow0(n\rightarrow \infty). =maxt∈[0,1]∣k=n+1∑∞k!tk∣≤∣k=n+1∑∞k!1∣→0(n→∞).
故 p n → p p_n \rightarrow p pn→p.但 p ∉ P [ 0 , 1 ] p\notin P[0,1] p∈/P[0,1],所以 P [ 0 , 1 ] P[0,1] P[0,1]不是闭子空间,从而不完备。
注: P [ 0 , 1 ] P[0,1] P[0,1]完备化空间为 C [ 0 , 1 ] C[0,1] C[0,1]。
凸集:
定义:
设
X
X
X是线性空间,
A
⊂
X
A\sub X
A⊂X,若对任意
x
,
y
∈
A
x,y\in A
x,y∈A,任意
α
∈
[
0
,
1
]
\alpha\in [0,1]
α∈[0,1],有
$$
\alpha x+(1-\alpha)y \in A,
$$
则称
A
A
A是
X
X
X的凸集。
命题:
设 A , B A,B A,B是 X X X中的凸集,则 A ⋂ B A\bigcap B A⋂B也是 X X X中的凸集。
单位开球是凸集:
赋范空间 X X X的单位开球 B ( θ , 1 ) = { x ∈ X ∣ ∣ ∣ x ∣ ∣ < 1 } B(\theta,1)=\{x\in X|\quad||x||<1\} B(θ,1)={x∈X∣∣∣x∣∣<1}是凸集。
Hamel基
设 X X X是线性空间。若存在 B ⊂ X B\sub X B⊂X,满足
(1) B B B是线性无关集
(2) s p a n { B } = X span\{B\}=X span{B}=X
则称 B B B是 X X X的Hamel基。
任何非 { θ } \{\theta\} {θ}线性空间必存在 H a m e l \mathrm{Hamel} Hamel基。
赋范空间的 S c h a u d e r \mathrm{Schauder} Schauder基:
定义:
设 X X X是无限维的赋范空间, { e n } \{e_n\} {en}是 X X X中的点列,若对任意 x ∈ X x\in X x∈X,
存在唯一数列
{
α
n
}
⊂
K
\{\alpha_n\}\sub K
{αn}⊂K,使得
x
=
∑
n
=
1
∞
α
n
e
n
x=\sum_{n=1}^{\infty}\alpha_ne_n
x=n=1∑∞αnen
则称
{
e
n
}
\{e_n\}
{en}为
X
X
X的**
S
c
h
a
u
d
e
r
\mathrm{Schauder}
Schauder基**。
S c h a u d e r \mathrm{Schauder} Schauder基与可分性
具有 S c h a u d e r \mathrm{Schauder} Schauder基的赋范空间 X X X是可分的。
$$
则称
{
e
n
}
\{e_n\}
{en}为
X
X
X的**
S
c
h
a
u
d
e
r
\mathrm{Schauder}
Schauder基**。
S c h a u d e r \mathrm{Schauder} Schauder基与可分性
具有 S c h a u d e r \mathrm{Schauder} Schauder基的赋范空间 X X X是可分的。