泛函分析笔记

符号

η ξ δ ε φ α β γ π θ \eta\\ \xi\\ \delta\\ \varepsilon\\ \varphi\\ \alpha\\ \beta\\ \gamma\\ \pi\\ \theta\\ ηξδεφαβγπθ

隐函数存在定理:

设 D = { ( x , y ) ∣ a ≤ x ≤ b , − ∞ ≤ y ≤ + ∞ } , F ( x , y ) 在 D 上连续且 m ≤ F y ( x , y ) ≤ M , 设D=\{(x,y)|a\leq x\leq b,-\infty\leq y \leq+\infty\}, F(x,y)在D上连续且m\leq F_y(x,y)\leq M, D={(x,y)axb,y+},F(x,y)D上连续且mFy(x,y)M,

其中 0 ≤ m ≤ M , ( x , y ) ∈ D . 其中0\leq m\leq M,(x,y)\in D. 其中0mM,(x,y)D.

则存在唯一的连续函数 y = φ ( X ) . s t F ( x , φ ( X ) ) ≡ 0 , x ∈ [ a , b ] . 则存在唯一的连续函数y=\varphi(X).st F(x,\varphi(X)) \equiv0,x\in[a,b]. 则存在唯一的连续函数y=φ(X).stF(x,φ(X))0,x[a,b].

证明:

(1)确定距离空间,建立映射

在连续函数 C [ a , b ] C[a,b] C[a,b]考虑映射:
( T φ ) ( x ) = φ ( x ) − 1 M F ( x , φ ( X ) ) , x ∈ [ a , b ] . (T\varphi)(x)=\varphi(x)-\frac{1}{M}F(x,\varphi(X)),x\in[a,b]. ()(x)=φ(x)M1F(x,φ(X)),x[a,b].
T T T C [ a , b ] C[a,b] C[a,b] C [ a , b ] C[a,b] C[a,b]的映射。

(2)我们先证明连续函数空间 C [ a , b ] C[a,b] C[a,b]是完备的

x n {x_n} xn C [ a , b ] C[a,b] C[a,b]的任意柯西列,由柯西列定义:

任意 ε > 0 \varepsilon>0 ε>0,存在 N ≥ 0 N\geq 0 N0,当 n , m ≥ N n,m\geq N n,mN时,对任意 t 0 ∈ [ a , b ] t_0\in[a,b] t0[a,b],
∣ x n ( t 0 ) − x m ( t 0 ) ∣ ≤ d ( x n , x m ) < ε . |x_n(t_0)-x_m(t_0)|\leq d(x_n,x_m)<\varepsilon. xn(t0)xm(t0)d(xn,xm)<ε.
固定 t 0 t_0 t0时, { x n ( t 0 ) } \{x_n(t_0)\} {xn(t0)} R R R的柯西列。

利用** R R R的完备性**(极限不会出去),存在 x ( t 0 ) ∈ R x(t_0)\in R x(t0)R
s t lim ⁡ x → ∞ x n ( t 0 ) = x ( 0 ) st\lim_{x\rightarrow\infty}x_n(t_0)=x(0) stxlimxn(t0)=x(0)
在上面的不等式中,

​ 令 m → ∞ m\rightarrow\infty m,则当 n ≥ N n\geq N nN时,
∣ x n ( t 0 ) − x m ( t 0 ) ∣ ≤ ε |x_n(t_0)-x_m(t_0)|\leq \varepsilon xn(t0)xm(t0)ε

定义 x = x ( t ) x=x(t) x=x(t), t 0 ∈ [ a , b ] t_0\in[a,b] t0[a,b],当 n ≥ N n\geq N nN时,
∣ x n ( t 0 ) − x ( t 0 ) ∣ ≤ ε |x_n(t_0)-x(t_0)|\leq \varepsilon xn(t0)x(t0)ε
即柯西列收敛。

(3)

压缩映射原理:

X X X是完备距离空间, T : X → X T:X\rightarrow X T:XX是压缩映射,则 T T T有唯一的不动点,即存在唯一 x ‾ ∈ X \overline{x}\in X xX,

使得 T x ‾ = x ‾ T\overline{x}=\overline{x} Tx=x.

双A定理:

C [ a , b ] C[a,b] C[a,b]中的子集 A A A是列紧集当且仅当 A A A中函数是一致有界和等度连续的。

一致有界:

存在 K > 0 K>0 K>0, s t st st对每一点 t ∈ [ a , b ] t\in[a,b] t[a,b]及一切 x ∈ A x\in A xA,有 ∣ x ( t ) ∣ ≤ K |x(t)|\leq K x(t)K.

等度连续:

对任意 ε > 0 \varepsilon>0 ε>0,存在$ \delta\geq0 , 当 ,当 ,|t_1-t_2|\leq\delta 时,对一切 时,对一切 时,对一切x\in A$,有:
∣ x ( t 1 ) − x ( t 2 ) ∣ ≤ ε . |x(t_1)-x(t_2)|\leq \varepsilon. x(t1)x(t2)ε.

列紧集:

A A A时距离空间 X X X的子集,若 A A A中任意点列都必有一个 X X X 中的收敛子列,则称集合 A A A为列紧集。

紧集:

A A A是距离空间 X X X的子集,若存在一族开集 { G α ∣ α ∈ I } \{G_\alpha|\alpha\in I\} {GααI} s t st st A ⊂ ⋃ α ∈ I G α A\subset \bigcup_{\alpha\in I}G_\alpha AαIGα,

则称开集 { G α ∣ α ∈ I } \{G_\alpha|\alpha\in I\} {GααI} A A A的一个开覆盖。

如果 A A A任意开覆盖必存在有限子覆盖,则称 A A A为紧集。

紧集的等价刻画:

**定理:**设 A A A是距离空间 X X X的子集,则 A A A是紧集当且仅当 A A A是列紧的闭集。

开集与闭集

距离空间中的任意开集可以表示成可数个闭集的并;

证明:

距离空间中的任意闭集可以表示成可数个开集的交;

证明:
A = A ‾ = { x ∣ d ( x , A ) = 0 } = ⋂ n = 1 ∞ { x ∣ d ( x , A ) < 1 n } A=\overline{A}=\{x|d(x,A)=0\}=\bigcap_{n=1}^\infty \{x|d(x,A)<\frac{1}{n}\} A=A={xd(x,A)=0}=n=1{xd(x,A)<n1}

赋范空间的定义

X X X是数域 K K K上的线性空间,若存在映射 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣∣∣: X → R X\rightarrow R XR满足
( 1 ) 对任意 x ∈ X , ∣ ∣ X ∣ ∣ ≥ 0 ; 且 ∣ ∣ X ∣ ∣ = 0 ⇔ x = ∅ ; ( 非负性 ) ( 2 ) 对任意 x ∈ X , 及 α ∈ K , ∣ α ∣ ∣ ∣ x ∣ ∣ ; ( 正齐次性 ) ( 3 ) 对任意 x , y ∈ X , ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ . ( 三角不等式 ) \begin{aligned} &(1)对任意x\in X,||X||\geq0;且||X||=0\Leftrightarrow x=\emptyset;(非负性)\\ &(2)对任意x\in X,及\alpha\in K,|\alpha|||x||;(正齐次性)\\ &(3)对任意x,y\in X,||x+y||\leq||x||+||y||.(三角不等式) \end{aligned} (1)对任意xX,∣∣X∣∣0;∣∣X∣∣=0x=;(非负性)(2)对任意xX,αK,α∣∣∣x∣∣;(正齐次性)(3)对任意x,yX,∣∣x+y∣∣∣∣x∣∣+∣∣y∣∣.(三角不等式)
则称 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣∣∣ X X X的一个范数,定义了范数的线性空间称为赋范线性空间,记为( X X X, ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣∣∣),或简记为 X X X.

Minkowski不等式


p ≥ 1 , ξ k , η k ∈ C , ( k = 1 , 2 , ⋯   ) p\geq1,\xi_k,\eta_k\in C,(k=1,2,\cdots) p1,ξk,ηkC,(k=1,2,)
则有
( ∑ k = 1 ∞ ∣ ξ k + η k ∣ p ) 1 p ≤ ( ∑ k = 1 ∞ ∣ ξ k ∣ p ) 1 p + ( ∑ k = 1 ∞ ∣ η k ∣ p ) 1 p (\sum_{k=1}^{\infty}|\xi_k+\eta_k|^p)^{\frac{1}{p}}\leq (\sum_{k=1}^{\infty}|\xi_k|^p)^{\frac{1}{p}} +(\sum_{k=1}^{\infty}|\eta_k|^p)^{\frac{1}{p}} (k=1ξk+ηkp)p1(k=1ξkp)p1+(k=1ηkp)p1
且当右边的两个级数收敛时,左边的级数收敛。

Holder不等式


p > 1 , 1 p + 1 q = 1 , ξ k , η k ∈ C , ( k = 1 , 2 , ⋯   ) p>1,\frac{1}{p}+\frac{1}{q}=1,\xi_k,\eta_k\in C,(k=1,2,\cdots) p>1,p1+q1=1,ξk,ηkC,(k=1,2,)
则有
∑ k = 1 ∞ ∣ ξ k η k ∣ ≤ ( ∑ k = 1 ∞ ∣ ξ k ∣ p ) 1 p ( ∑ k = 1 ∞ ∣ η k ∣ q ) 1 q \sum_{k=1}^{\infty}|\xi_k\eta_k| \leq (\sum_{k=1}^{\infty}|\xi_k|^p)^{\frac{1}{p}} (\sum_{k=1}^{\infty}|\eta_k|^q)^{\frac{1}{q}} k=1ξkηk(k=1ξkp)p1(k=1ηkq)q1

Banach空间:

Banach空间的定义:

( X , ∣ ∣ ⋅ ∣ ∣ ) (X,||\cdot||) (X,∣∣∣∣)是赋范空间, d d d是范数诱导的距离,若 ( X , d ) (X,d) (X,d)是完备的距离空间,则称 ( X , ∣ ∣ ⋅ ∣ ∣ ) (X,||\cdot||) (X,∣∣∣∣)

Banach空间

赋范空间的级数:

{ x n } \{x_n\} {xn}是赋范空间 X X X中的点列,若它的前n项和
S n = x 1 + x 2 + ⋯ + x n S_n=x_1+x_2+\cdots+x_n Sn=x1+x2++xn
收敛,即存在 x ∈ X x\in X xX,使得 S n → x ( n → ∞ ) S_n\rightarrow x(n\rightarrow\infty) Snx(n).则称 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn收敛

并称 x x x为基数的,记为 x = ∑ n = 1 ∞ x n x=\sum_{n=1}^{\infty}x_n x=n=1xn

∑ n = 1 ∞ ∣ ∣ x n ∣ ∣ \sum_{n=1}^{\infty}||x_n|| n=1∣∣xn∣∣收敛,则称级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn绝对收敛。(正项级数)

Banach空间的性质:

X X X是赋范空间,则 X X X是Banach空间的充要条件是 X X X中的任一绝对收敛的级数都收敛。

证明:(必要性)

X X X是Banach空间, ∑ n = 1 x n ∞ \sum_{n=1}x_n^{\infty} n=1xn绝对收敛。记 ∑ n = 1 x n ∞ \sum_{n=1}x_n^{\infty} n=1xn的部分和数列为 { S n } \{S_n\} {Sn}.

由数项级数的柯西收敛准则,

对任意 ε > 0 \varepsilon> 0 ε>0,存在 N N N,当 n > N n>N n>N时,对任意的正整数 p p p
∣ ∣ S n + p − S n ∣ ∣ = ∣ ∣ x n + 1 + ⋯ + x n + p ∣ ∣ ≤ ∣ ∣ x n + 1 ∣ ∣ + ⋯ + ∣ ∣ x n + p ∣ ∣ < ε ||S_{n+p}-S_n||=||x_{n+1}+\cdots+x_{n+p}|| \leq||x_{n+1}||+\cdots+||x_{n+p}||<\varepsilon ∣∣Sn+pSn∣∣=∣∣xn+1++xn+p∣∣∣∣xn+1∣∣++∣∣xn+p∣∣<ε
因此 S n {S_n} Sn X X X中的柯西列,由完备性知 { S n } \{S_{n}\} {Sn}收敛,即 ∑ n = 1 x n ∞ \sum_{n=1}x_n^{\infty} n=1xn收敛。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

子空间的完备性:

X X X是Banach空间, E E E X X X的子空间,则 E E E是Banach空间的充要条件是 E E E X X X子空间。

非闭子空间的例子:

P [ 1 , 0 ] P[1,0] P[1,0] [ 0 , 1 ] [0,1] [0,1]上的多项式全体,则 P [ 0 , 1 ] P[0,1] P[0,1]作为 C [ 0 , 1 ] C[0,1] C[0,1]的子空间不是Banach空间。

**证明:**令
p n ( t ) = ∑ k = 0 n t k k ! ( n = 1 , 2 , ⋯   ) . p_n(t)=\sum_{k=0}^{n}\frac{t^k}{k!}(n=1,2,\cdots). pn(t)=k=0nk!tk(n=1,2,).
并记 p ( t ) = e t p(t)=e^t p(t)=et.则 { p n } ⊂ P [ 0 , 1 ] \{p_n\}\sub P[0,1] {pn}P[0,1],且
∣ ∣ p n − p ∣ ∣ = m a x t ∈ [ 0 , 1 ] ∣ p n ( t ) − e t ∣ = m a x t ∈ [ 0 , 1 ] ∣ ∑ k = 0 n t k k ! − ∑ k = 0 ∞ t k k ! ∣ ||p_n-p||=max_{t\in[0,1]}|p_n(t)-e^t| =max_{t\in[0,1]}|\sum_{k=0}^n\frac{t^k}{k!}-\sum_{k=0}^{\infty}\frac{t^k}{k!}| ∣∣pnp∣∣=maxt[0,1]pn(t)et=maxt[0,1]k=0nk!tkk=0k!tk

= m a x t ∈ [ 0 , 1 ] ∣ ∑ k = n + 1 ∞ t k k ! ∣ ≤ ∣ ∑ k = n + 1 ∞ 1 k ! ∣ → 0 ( n → ∞ ) . =max_{t\in[0,1]}|\sum_{k=n+1}^{\infty}\frac{t^k}{k!}| \leq |\sum_{k=n+1}^{\infty}\frac{1}{k!}| \rightarrow0(n\rightarrow \infty). =maxt[0,1]k=n+1k!tkk=n+1k!10(n).

p n → p p_n \rightarrow p pnp.但 p ∉ P [ 0 , 1 ] p\notin P[0,1] p/P[0,1],所以 P [ 0 , 1 ] P[0,1] P[0,1]不是闭子空间,从而不完备。

注: P [ 0 , 1 ] P[0,1] P[0,1]完备化空间为 C [ 0 , 1 ] C[0,1] C[0,1]

凸集:

定义:

X X X是线性空间, A ⊂ X A\sub X AX,若对任意 x , y ∈ A x,y\in A x,yA,任意 α ∈ [ 0 , 1 ] \alpha\in [0,1] α[0,1],有
$$
\alpha x+(1-\alpha)y \in A,

$$
则称 A A A X X X的凸集。

命题:

A , B A,B A,B X X X中的凸集,则 A ⋂ B A\bigcap B AB也是 X X X中的凸集。

单位开球是凸集:

赋范空间 X X X的单位开球 B ( θ , 1 ) = { x ∈ X ∣ ∣ ∣ x ∣ ∣ < 1 } B(\theta,1)=\{x\in X|\quad||x||<1\} B(θ,1)={xX∣∣x∣∣<1}凸集

Hamel基

X X X是线性空间。若存在 B ⊂ X B\sub X BX,满足

(1) B B B是线性无关集

(2) s p a n { B } = X span\{B\}=X span{B}=X

则称 B B B X X X的Hamel基。

任何非 { θ } \{\theta\} {θ}线性空间必存在 H a m e l \mathrm{Hamel} Hamel基。

赋范空间的 S c h a u d e r \mathrm{Schauder} Schauder基:

定义:

X X X是无限维的赋范空间, { e n } \{e_n\} {en} X X X中的点列,若对任意 x ∈ X x\in X xX,

存在唯一数列 { α n } ⊂ K \{\alpha_n\}\sub K {αn}K,使得
x = ∑ n = 1 ∞ α n e n x=\sum_{n=1}^{\infty}\alpha_ne_n x=n=1αnen
则称 { e n } \{e_n\} {en} X X X的** S c h a u d e r \mathrm{Schauder} Schauder基**。

image-20231104211349597
S c h a u d e r \mathrm{Schauder} Schauder基与可分性

具有 S c h a u d e r \mathrm{Schauder} Schauder基的赋范空间 X X X是可分的。

$$
则称 { e n } \{e_n\} {en} X X X的** S c h a u d e r \mathrm{Schauder} Schauder基**。

image-20231104211349597
S c h a u d e r \mathrm{Schauder} Schauder基与可分性

具有 S c h a u d e r \mathrm{Schauder} Schauder基的赋范空间 X X X是可分的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值