内积的性质(Hilbert空间)

内积的性质( H i l b e r t \mathrm{Hilbert} Hilbert空间)

S c h w a r z \mathrm{Schwarz} Schwarz不等式

定理:设 H H H是内积空间,则对任意 x , y ∈ H x,y\in H x,yH,有
∣ ( x , y ) ∣ 2 ≤ ( x , x ) ( y , y ) . |(x,y)|^2\leq(x,x)(y,y). (x,y)2(x,x)(y,y).
**注:**等号成立的充要条件是 x x x y y y线性相关。

在这里插入图片描述

内积空间的范数

定理:设 H H H是内积空间,则对任意 x ∈ H x\in H xH,定义
∣ ∣ x ∣ ∣ = ( x , x ) ||x||=\sqrt{(x,x)} ∣∣x∣∣=(x,x)
∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣∣∣ H H H上的范数。

在这里插入图片描述

注:

(1)内积空间一定是赋范空间。

(2)在范数的记号下, S c h w a r z \mathrm{Schwarz} Schwarz不等式可写成 ∣ ( x , y ) ∣ ≤ ∣ ∣ x ∣ ⋅ ∣ ∣ y ∣ ∣ |(x,y)| \leq ||x|\cdot||y|| (x,y)∣∣x∣∣y∣∣

内积的连续性

**定理:**在内积空间 H H H中,若 x n → x , y n → y x_n\rightarrow x,y_n\rightarrow y xnx,yny
( x n , y n ) → ( x , y ) ( n → ∞ ) . (x_n,y_n)\rightarrow(x,y)\enspace (n\rightarrow \infty). (xn,yn)(x,y)(n).

说明极限运算和内积可以交换次序:
lim ⁡ n → ∞ ( x n , y n ) = ( lim ⁡ n → ∞ x n , lim ⁡ n → ∞ y n ) \lim_{n\rightarrow \infty}(x_n,y_n)= (\lim_{n\rightarrow \infty}x_n,\lim_{n\rightarrow \infty}y_n) nlim(xn,yn)=(nlimxn,nlimyn)

在这里插入图片描述

H i l b e r t \mathrm{Hilbert} Hilbert空间的定义

H H H是内积空间,如果由内积导出赋范空间是完备的

则称 H H H是完备的。完备的内积空间称为** H i l b e r t \mathrm{Hilbert} Hilbert空间**。

注: l 2 l^2 l2为平方可和的数列全体。 L 2 [ a , b ] L^2[a,b] L2[a,b]平方可积的函数全体。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值