内积的性质( H i l b e r t \mathrm{Hilbert} Hilbert空间)
S c h w a r z \mathrm{Schwarz} Schwarz不等式
定理:设
H
H
H是内积空间,则对任意
x
,
y
∈
H
x,y\in H
x,y∈H,有
∣
(
x
,
y
)
∣
2
≤
(
x
,
x
)
(
y
,
y
)
.
|(x,y)|^2\leq(x,x)(y,y).
∣(x,y)∣2≤(x,x)(y,y).
**注:**等号成立的充要条件是
x
x
x与
y
y
y线性相关。
内积空间的范数
定理:设
H
H
H是内积空间,则对任意
x
∈
H
x\in H
x∈H,定义
∣
∣
x
∣
∣
=
(
x
,
x
)
||x||=\sqrt{(x,x)}
∣∣x∣∣=(x,x)
则
∣
∣
⋅
∣
∣
||\cdot||
∣∣⋅∣∣是
H
H
H上的范数。
注:
(1)内积空间一定是赋范空间。
(2)在范数的记号下, S c h w a r z \mathrm{Schwarz} Schwarz不等式可写成 ∣ ( x , y ) ∣ ≤ ∣ ∣ x ∣ ⋅ ∣ ∣ y ∣ ∣ |(x,y)| \leq ||x|\cdot||y|| ∣(x,y)∣≤∣∣x∣⋅∣∣y∣∣
内积的连续性
**定理:**在内积空间
H
H
H中,若
x
n
→
x
,
y
n
→
y
x_n\rightarrow x,y_n\rightarrow y
xn→x,yn→y则
(
x
n
,
y
n
)
→
(
x
,
y
)
(
n
→
∞
)
.
(x_n,y_n)\rightarrow(x,y)\enspace (n\rightarrow \infty).
(xn,yn)→(x,y)(n→∞).
说明极限运算和内积可以交换次序:
lim
n
→
∞
(
x
n
,
y
n
)
=
(
lim
n
→
∞
x
n
,
lim
n
→
∞
y
n
)
\lim_{n\rightarrow \infty}(x_n,y_n)= (\lim_{n\rightarrow \infty}x_n,\lim_{n\rightarrow \infty}y_n)
n→∞lim(xn,yn)=(n→∞limxn,n→∞limyn)
H i l b e r t \mathrm{Hilbert} Hilbert空间的定义
设 H H H是内积空间,如果由内积导出赋范空间是完备的,
则称 H H H是完备的。完备的内积空间称为** H i l b e r t \mathrm{Hilbert} Hilbert空间**。
注: l 2 l^2 l2为平方可和的数列全体。 L 2 [ a , b ] L^2[a,b] L2[a,b]平方可积的函数全体。