Linear map

In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V → W {\displaystyle V\to W} VW between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.

If a linear map is a bijection then it is called a linear isomorphism. In the case where V = W {\displaystyle V=W} V=W, a linear map is called a (linear) endomorphism. Sometimes the term linear operator refers to this case, but the term “linear operator” can have different meanings for different conventions: for example, it can be used to emphasize that V {\displaystyle V} V and W {\displaystyle W} W are real vector spaces (not necessarily with V = W {\displaystyle V=W} V=W), or it can be used to emphasize that V {\displaystyle V} V is a function space, which is a common convention in functional analysis. Sometimes the term linear function has the same meaning as linear map, while in analysis it does not.

A linear map from V V V to W W W always maps the origin of V V V to the origin of W W W. Moreover, it maps linear subspaces in V V V onto linear subspaces in W W W (possibly of a lower dimension); for example, it maps a plane through the origin in V V V to either a plane through the origin in W W W, a line through the origin in W W W, or just the origin in W W W. Linear maps can often be represented as matrices, and simple examples include rotation and reflection linear transformations.

In the language of category theory, linear maps are the morphisms of vector spaces.

1 Definition and first consequences


Let V , W V, W V,W be vector spaces over the same field K K K. A function f : V → W f: V \to W f:VW is said to be a linear map if for any two vectors u , v ∈ V u,v \in V u,vV and any scalar c ∈ K c \in K cK the following two conditions are satisfied:

  • Additivity / operation of addition
    f ( u + v ) = f ( u ) + f ( v ) f(u + v) = f(u) + f(v) f(u+v)=f(u)+f(v)
  • homogeneity of degree 1 1 1 / operation of scalar multiplication
    f ( c u ) = c f ( u ) f(cu) = c f(u) f(cu)=cf(u)

Thus, a linear map is said to be operation preserving. In other words, it does not matter whether the linear map is applied before (the right hand sides of the above examples) or after (the left hand sides of the examples) the operations of addition and scalar multiplication.

By the associativity of the addition operation denoted as + + +, for any vectors u 1 , . . . u n ∈ V u_1, ... u_n \in V u1,...unV and scalars c 1 , . . . , c n ∈ K c_1, ..., c_n \in K c1,...,cnK, the following, the following equality holds:
f ( c 1 u 1 + ⋯ + c n u n ) = c 1 f ( u 1 ) + ⋯ + c n f ( u n ) . {\displaystyle f(c_{1}\mathbf {u} _{1}+\cdots +c_{n}\mathbf {u} _{n})=c_{1}f(\mathbf {u} _{1})+\cdots +c_{n}f(\mathbf {u} _{n}).} f(c1u1++cnun)=c1f(u1)++cnf(un).
Thus a linear map is one which preserves linear combinations.

Denoting the zero elements of the vector spaces V , W V, W V,W by 0 v , 0 w 0_v, 0_w 0v,0w respectively, it follows that f ( 0 v ) = 0 w f(0_v) = 0_w f(0v)=0w. Let c = 0 c = 0 c=0 and v ∈ V v \in V vV in the equation for homogeneity of degree 1 1 1:
f ( 0 V ) = f ( 0 v ) = 0 f ( v ) = 0 W . {\displaystyle f(\mathbf {0} _{V})=f(0\mathbf {v} )=0f(\mathbf {v} )=\mathbf {0} _{W}.} f(0V)=f(0v)=0f(v)=0W.

A linear map V → K V \to K VK with K K K viewed as a one-dimensional vector space over itself is called a linear functional.

These statements generalize to any left-module R M {\textstyle {}_{R}M} RM over a ring R R R without modification, and to any right-module upon reversing of the scalar multiplication.

2 Examples


2.1 Linear extensions


3 Matrices


3.1 Examples in two dimensions


4 Vector space of linear maps


4.1 Endomorphisms and automorphisms


5 Kernel, image and the rank-nullity theorem


6 Cokernel


6.1 Index


7 Algebraic classifications of linear transformations


7.1 Monomorphism


7.2 Epimorphism


7.3 Isomorphism


8 Change of basis


9 Continuity


10 Applications


11 See also


12 Notes


14 Bibliography

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值