In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain.
Real-valued functions of a real variable (commonly called real functions) and real-valued functions of several real variables are the main object of study of calculus and, more generally, real analysis. In particular, many function spaces consist of real-values functions.
Contents
1 Algebraic structure
Let F ( X , R ) {\displaystyle {\mathcal {F}}(X,{\mathbb {R} })} F(X,R) be the set of all functions from a set X X X to real numbers R R R. Because R R R is a field, F ( X , R ) {\displaystyle {\mathcal {F}}(X,{\mathbb {R} })} F(X,R) may be turned into a vector space and a commutative algebra over the reals with the following operations:
- f + g : x ↦ f ( x ) + g ( x ) {\displaystyle f+g:x\mapsto f(x)+g(x)} f+g:x↦f(x)+g(x)–vector addition
- 0 : x ↦ 0 0: x \mapsto 0 0:x↦0–additive identity
- c f : x ↦ c f ( x ) , c ∈ R cf : x \mapsto cf(x), \ \ \ c \in R cf:x↦cf(x), c∈R–[scalar multiplication$
- f g : x ↦ f ( x ) g ( x ) {\displaystyle fg:x\mapsto f(x)g(x)} fg:x↦f(x)g(x)–pointwise multiplication
These operations extend to partial functions from X X X to R R R, with the restriction that the partial functions f + g f+g f+g and f g fg fg are defined only if the domains of f f f and g g g have a nonempty intersection; in this case, their domain is the intersection of the domains of f , g f, g f,g.
Also, since
R
R
R is an ordered set, there is a partial order
f
≤
g
⟺
∀
x
:
f
(
x
)
≤
g
(
x
)
,
{\displaystyle \ f\leq g\quad \iff \quad \forall x:f(x)\leq g(x),}
f≤g⟺∀x:f(x)≤g(x),
on
F
(
X
,
R
)
,
{\displaystyle {\mathcal {F}}(X,{\mathbb {R} }),}
F(X,R), which makes
F
(
X
,
R
)
,
{\displaystyle {\mathcal {F}}(X,{\mathbb {R} }),}
F(X,R), a partially ordered ring.