数学 {复合函数的连续性}
复合函数的连续性
定义
设复合函数z(x)=f[g(x)]z(x) = f[g(x)]z(x)=f[g(x)]在x0x_0x0的去心邻域有定义, [(limx→x0g(x)=u0)∧(f(u)在u0连续)] ⟹ (limx→x0z(x)=f(u0))[(\lim_{x \to x_0} g(x) = u_0) \land (f(u)在u_0连续)] \implies (\lim_{x \to x_0} z(x) = f(u_0))[(limx→x0g(x)=u0)∧(f(u)在u0连续)]⟹(limx→x0z(x)=f(u0));
.
证明: LINK: @LOC-1
;
设复合函数z(x)=f[g(x)]z(x) = f[g(x)]z(x)=f[g(x)]在x0x_0x0的邻域有定义, [(g(x)在x0处连续,且u0=g(x0))∧(f(u)在u0连续)] ⟹ (limx→x0z(x)=f(u0))[(g(x)在x_0处连续, 且u_0=g(x_0)) \land (f(u)在u_0连续)] \implies (\lim_{x \to x_0} z(x) = f(u_0))[(g(x)在x0处连续,且u0=g(x0))∧(f(u)在u0连续)]⟹(limx→x0z(x)=f(u0));
.
证明: ;
性质
要会变通, 因为结论里有f(u0)f(u_0)f(u0);
.
因为f(u0)=limu→u0f(u)f(u_0) = \lim_{u \to u_0} f(u)f(u0)=limu→u0f(u), 故结论也可变为: limx→x0f[g(x)]=limu→u0f(u)\lim_{x \to x_0} f[g(x)] = \lim_{u \to u_0} f(u)limx→x0f[g(x)]=limu→u0f(u);
.
.
即, 对z(x)z(x)z(x)求极限, 可将xxx代换为u=g(x)u=g(x)u=g(x);
.
因为f(u0)=f(limx→x0g(x))f(u_0) = f( \lim_{x \to x_0} g(x))f(u0)=f(limx→x0g(x)), 故结论也可变为: limx→x0f[g(x)]=f[limx→x0g(x)]\lim_{x \to x_0} f[g(x)] = f[ \lim_{x \to x_0} g(x)]limx→x0f[g(x)]=f[limx→x0g(x)];
.
.
即, 对z(x)z(x)z(x)求极限, 可将极限号放到函数fff里面;
@DELIMITER
MARK: @LOC-1
;
他已经满足 复合函数求极限的第{1,3}条件 (LINK: (https://editor.csdn.net/md/?articleId=130311530)/@LOC-0
);
.
但他额外多了个条件 fff在u0u_0u0连续, LINK: (https://editor.csdn.net/md/?articleId=130311530)/@LOC-2
;
.
.
即, 即使他不满足第2条件, 定理仍然成立;
@DELIMITER
(z(x)=f[g(x)]在x0连续)̸ ⟹ g(x)在x0有极限(z(x) = f[ g(x)]在x_0连续) \not \implies g(x)在x_0有极限(z(x)=f[g(x)]在x0连续)⟹g(x)在x0有极限;
.
令f(x)=C,∀x∈Rf(x) = C, \forall x \in \mathbb Rf(x)=C,∀x∈R; g(<x0)=0,g(x0)=1,g(>x0)=2g(<x_0) = 0, g(x_0) = 1, g(>x_0) = 2g(<x0)=0,g(x0)=1,g(>x0)=2;
.
.
可知, g(x)g(x)g(x)在x0x_0x0没有极限, 但z(x)z(x)z(x)在x0x_0x0是连续的;
–
(z(x)=f[g(x)]在x0连续)̸ ⟹ f(x)在g(x0)有极限(z(x) = f[ g(x)]在x_0连续) \not \implies f(x)在g(x_0)有极限(z(x)=f[g(x)]在x0连续)⟹f(x)在g(x0)有极限;
.
令g(x)=C,∀x∈Rg(x) = C, \forall x \in Rg(x)=C,∀x∈R; f(<C)=0,f(C)=1,f(>C)=2f(<C) = 0, f(C) = 1, f(>C) = 2f(<C)=0,f(C)=1,f(>C)=2;
.
.
可知, f(x)f(x)f(x)在CCC处没有极限, 但z(x)z(x)z(x)在x0x_0x0是连续的;