数学 {复合函数的连续性}

文章讨论了复合函数在某点连续性的条件,即内层函数在该点有极限且外层函数在其极限值处连续,证明了当这两个条件满足时,复合函数在该点的极限等于外层函数对内层函数极限值的函数值。同时,举例说明了函数连续并不意味着内层或外层函数在相应点有极限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学 {复合函数的连续性}

复合函数的连续性

定义

设复合函数z(x)=f[g(x)]z(x) = f[g(x)]z(x)=f[g(x)]x0x_0x0去心邻域有定义, [(lim⁡x→x0g(x)=u0)∧(f(u)在u0连续)]  ⟹  (lim⁡x→x0z(x)=f(u0))[(\lim_{x \to x_0} g(x) = u_0) \land (f(u)在u_0连续)] \implies (\lim_{x \to x_0} z(x) = f(u_0))[(limxx0g(x)=u0)(f(u)u0连续)](limxx0z(x)=f(u0));
. 证明: LINK: @LOC-1;

设复合函数z(x)=f[g(x)]z(x) = f[g(x)]z(x)=f[g(x)]x0x_0x0邻域有定义, [(g(x)在x0处连续,且u0=g(x0))∧(f(u)在u0连续)]  ⟹  (lim⁡x→x0z(x)=f(u0))[(g(x)在x_0处连续, 且u_0=g(x_0)) \land (f(u)在u_0连续)] \implies (\lim_{x \to x_0} z(x) = f(u_0))[(g(x)x0处连续,u0=g(x0))(f(u)u0连续)](limxx0z(x)=f(u0));
. 证明: ;

性质

要会变通, 因为结论里有f(u0)f(u_0)f(u0);
. 因为f(u0)=lim⁡u→u0f(u)f(u_0) = \lim_{u \to u_0} f(u)f(u0)=limuu0f(u), 故结论也可变为: lim⁡x→x0f[g(x)]=lim⁡u→u0f(u)\lim_{x \to x_0} f[g(x)] = \lim_{u \to u_0} f(u)limxx0f[g(x)]=limuu0f(u);
. . 即, 对z(x)z(x)z(x)求极限, 可将xxx代换为u=g(x)u=g(x)u=g(x);
. 因为f(u0)=f(lim⁡x→x0g(x))f(u_0) = f( \lim_{x \to x_0} g(x))f(u0)=f(limxx0g(x)), 故结论也可变为: lim⁡x→x0f[g(x)]=f[lim⁡x→x0g(x)]\lim_{x \to x_0} f[g(x)] = f[ \lim_{x \to x_0} g(x)]limxx0f[g(x)]=f[limxx0g(x)];
. . 即, 对z(x)z(x)z(x)求极限, 可将极限号放到函数fff里面;

@DELIMITER

MARK: @LOC-1;

他已经满足 复合函数求极限的第{1,3}条件 (LINK: (https://editor.csdn.net/md/?articleId=130311530)/@LOC-0);
. 但他额外多了个条件 fffu0u_0u0连续, LINK: (https://editor.csdn.net/md/?articleId=130311530)/@LOC-2;
. . 即, 即使他不满足第2条件, 定理仍然成立;

@DELIMITER

(z(x)=f[g(x)]在x0连续)̸  ⟹  g(x)在x0有极限(z(x) = f[ g(x)]在x_0连续) \not \implies g(x)在x_0有极限(z(x)=f[g(x)]x0连续)g(x)x0有极限;
.f(x)=C,∀x∈Rf(x) = C, \forall x \in \mathbb Rf(x)=C,xR; g(<x0)=0,g(x0)=1,g(>x0)=2g(<x_0) = 0, g(x_0) = 1, g(>x_0) = 2g(<x0)=0,g(x0)=1,g(>x0)=2;
. . 可知, g(x)g(x)g(x)x0x_0x0没有极限, 但z(x)z(x)z(x)x0x_0x0是连续的;

(z(x)=f[g(x)]在x0连续)̸  ⟹  f(x)在g(x0)有极限(z(x) = f[ g(x)]在x_0连续) \not \implies f(x)在g(x_0)有极限(z(x)=f[g(x)]x0连续)f(x)g(x0)有极限;
.g(x)=C,∀x∈Rg(x) = C, \forall x \in Rg(x)=C,xR; f(<C)=0,f(C)=1,f(>C)=2f(<C) = 0, f(C) = 1, f(>C) = 2f(<C)=0,f(C)=1,f(>C)=2;
. . 可知, f(x)f(x)f(x)CCC处没有极限, 但z(x)z(x)z(x)x0x_0x0是连续的;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值