In geometry, a half-space is either of the two parts into which a plane divides the three-dimensional Euclidean space. If the space if two-dimensional, then a half-space is called a half-plane (open or closed). A half-space in a one-dimensional space is called a half-line or ray.
More generally, a half-space is either of the two parts into which a hyperplane divides an affine space. That is, the points that are not incident to the hyperplane are partitioned into two convex sets (i.e., half-spaces), such that any subspace connecting a point in one set to a point in the other must intersect the hyperplane.
A half-space can be either open or closed. An open half-space is either of the two open sets produced by the subtraction of a hyperplane from the affine space. A closed half-space is the union of an open half-space and the hyperplane that defines it.
A half-space may be specified by a linear inequality, derived from the linear equation that specifies the defining hyperplane. A strict linear inequality specifies an open half-space:
a
1
x
1
+
a
2
x
2
+
⋯
+
a
n
x
n
>
b
a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}>b
a1x1+a2x2+⋯+anxn>b
A non-strict one specifies a closed half-space:
a
1
x
1
+
a
2
x
2
+
⋯
+
a
n
x
n
≥
b
a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}\geq b
a1x1+a2x2+⋯+anxn≥b
Here, one assumes that not all of the real numbers
a
1
,
.
.
.
,
a
n
a_1, ..., a_n
a1,...,an are zero.