Topology

In mathematics, topology is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretch, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself.

A topological space is a set endowed with a structure, called a topology, which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; connectedness, which allows distinguishing a circle from two non-intersecting circles.

The ideas underlying topology go back to Gottfried Leibniz, who in the 17th century envisioned the geometria situs and analysis situs. Leonhard Euler’s Seven Bridges of Königsberg problem and polyhedron formula are arguably the field’s first theorems. The term topology was introduced by Johann Benedict Listing in the 19th century, although it was not until the first decades of the 20th century that the idea of a topological space was developed.

1 Motivation


The motivating insight behind topology is that some geometric problems depend not on the exact shape of the objects involved, but rather on the way they are put together. For example, the square and the circle have many properties in common: they are both one dimensional objects (from a topological point of view) and both separate the plane into two parts, the part inside and the part outside.

In one of the first papers in topology, Leonhard Euler demonstrated that it was impossible to find a rout through the town of Königsberg (now Kaliningrad) that would cross each of its seven bridges exactly once. This result did not depend on the lengths of the bridges or on their distance from one another, but only on connectivity properties: which bridges connect to which islands or riverbanks. This Seven Bridges of Königsberg problems led to the branch of mathematics known as graph theory.

Similarly, the hairy ball theorem of algebraic topology says that “one cannot comb the hair ball without creating a cowlick”. This fact is immediately convincing to most people, even though they might not recognize the more formal statement of the theorem, that there is no nonvanishing continuous tangent vector field on the sphere. As with the Bridges of Königsberg, the result does not depend on the shape of the sphere; it applies to any kind of smooth blob, as long as it has no holes.

To deal with these problems that do not rely on the exact shape of the objects, one must be clear about just what properties these problems do rely on. From this need arises the notion of homeomorphism. The impossibility of crossing each bridge just once applies to any arrangement of bridges homeomorphic to those in Königsberg, and the hairy ball theorem applies to any space homeomorphic to a sphere.

Intuitively, two spaces are homeomorphic if one can be deformed into the other without cutting or gluing. A traditional joke is that a topologist cannot distinguish a coffee mug from a doughnut, since a sufficiently pliable doughnut could be reshaped to a coffee cup by creating a dimple and progressively enlarging it, while shrinking the hole into a handle.

Homeomorphism can be considered the most basic topological equivalence. Another is homotopy equivalence. This is harder to describe without getting technical, the the essential notion is that two objects are homotopy equivalent if they both result from “squishing” some larger object.

Equivalence classes of the Latin alphabet in the sans-serif font
HomeomorphismHomotopy equivalence
{A,R} {B} {C,G,I,J,L,M,N,S,U,V,W,Z}, {D,O} {E,F,T,Y} {H,K}, {P,Q} {X}{A,R,D,O,P,Q} {B}, {C,E,F,G,H,I,J,K,L,M,N,S,T,U,V,W,X,Y,Z}

An introductory exercise is to classify the uppercase letters of the English alphabet according to homeomorphism and homotopy equivalence. The result depends on the font used, and on whether the strokes making up the letters have some thickness or are ideal curves with no thickness. The figures here use the sans-serif Myriad font and are assumed to consist of ideal curves without thickness. Homotopy equivalence is a coarser relationship than homeomorphism; a homotopy equivalence class can contain several homeomorphism classes. This simple case of homotopy equivalence described above can be used here to show two letters are homotopy equivalent. For example, O O O fits inside P P P and the tail of the P P P can be squished to the “hole” part.

Homeomorphism classes are:

  • no holes corresponding with C , G , I , J , L , M , N , S , U , V , W , Z C, G, I, J, L, M, N, S, U, V, W, Z C,G,I,J,L,M,N,S,U,V,W,Z;
  • no holes and three tails corresponding with E , F , T , Y E, F, T, Y E,F,T,Y;
  • no holes and four tails corresponding with X X X;
  • one hole and no tail corresponding with D , O D, O D,O;
  • one hole and one tail corresponding with P , Q P, Q P,Q;
  • one hole and two tails corresponding with A , R A, R A,R;
  • two hole and no tail corresponding with B B B;
  • and a bar with four tails corresponding with H , K H, K H,K; the “bar” on the K K K is almost too short to set.

Homotopy classes are larger, because the tail can be squished down to a point. They are:

  • one hole,
  • two holes, and
  • no holes

To classify the letters correctly, we must show that two letters in the same class are equivalent and two letters in different classes are not equivalent. In the case of homeomorphism, this can be done by selecting points and showing their removal disconnects the letter differently. For example, X , Y X, Y X,Y are not homeomorphic because removing the center point of the X X X leaves four pieces; whatever point in Y Y Y corresponds to this point, its removal can leave at most three pieces. The case of homotopy equivalence is harder and requires a more elaborate argument showing an algebraic invariant, such as the fundamental group, is different on the supposedly differing classes.

2 History


3 Concepts


3.1 Topologies on sets


3.2 Continuous functions and homeomorphisms


3.3 Manifolds


4 Topics


4.1 General topology


4.2 Algebraic topology


4.3 Differential topology


4.4 Geometric topology


4.5 Generalizations


5 Applications


5.1 Biology


5.2 Computer science


5.3 Physics


5.4 Robotics


5.5 Games and puzzles


5.6 Fiber art


6 See also


7 References


7.1 Citations


7.2 Bibliography


8 Further reading


9 External links

Topology-master是指在分布式系统中负责管理和控制拓扑信息的主节点。拓扑信息是指分布式系统中各个节点之间的连接关系和通信方式。在分布式系统中,各个节点需要相互通信和协作,为了更高效地组织和管理节点之间的连接关系,需要有一个独立的节点来负责管理和控制拓扑信息,这个节点就是Topology-master。 Topology-master的主要工作包括: 1. 节点管理:Topology-master负责记录系统中所有节点的信息,包括节点的状态、地址、资源等。它可以监控节点的运行状态,对不正常的节点进行管理和处理,保证系统的正常运行。 2. 连接管理:Topology-master负责管理节点之间的连接关系,包括建立、维持和更新节点之间的通信链接。它可以检测节点之间的连接是否正常,当出现连接故障时,可以及时处理并恢复连接,确保节点之间的通信畅通。 3. 负载均衡:Topology-master可以根据系统的负载情况对节点进行负载均衡,将任务合理地分配给各个节点,避免某个节点过载而导致系统性能下降。它可以根据节点的资源情况和任务的需求进行动态调度,提高系统的整体效率和吞吐量。 4. 拓扑管理:Topology-master负责管理系统中的拓扑信息,包括节点之间的物理拓扑和逻辑拓扑。它可以根据拓扑的变化来进行相应的调整和优化,确保系统的可扩展性和稳定性。 5. 安全管理:Topology-master可以负责对节点之间的通信进行安全管理,确保通信的机密性和完整性。它可以对通信进行加密和验证,防止未授权的节点接入系统,保护系统的安全性。 总之,Topology-master在分布式系统中是一个重要的节点,它负责管理和控制拓扑信息,保证系统的正常运行和性能优化。它具有节点管理、连接管理、负载均衡、拓扑管理和安全管理等功能,为整个系统提供了稳定、高效和安全的通信环境。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值