Topology

In mathematics, topology is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretch, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself.

A topological space is a set endowed with a structure, called a topology, which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; connectedness, which allows distinguishing a circle from two non-intersecting circles.

The ideas underlying topology go back to Gottfried Leibniz, who in the 17th century envisioned the geometria situs and analysis situs. Leonhard Euler’s Seven Bridges of Königsberg problem and polyhedron formula are arguably the field’s first theorems. The term topology was introduced by Johann Benedict Listing in the 19th century, although it was not until the first decades of the 20th century that the idea of a topological space was developed.

1 Motivation


The motivating insight behind topology is that some geometric problems depend not on the exact shape of the objects involved, but rather on the way they are put together. For example, the square and the circle have many properties in common: they are both one dimensional objects (from a topological point of view) and both separate the plane into two parts, the part inside and the part outside.

In one of the first papers in topology, Leonhard Euler demonstrated that it was impossible to find a rout through the town of Königsberg (now Kaliningrad) that would cross each of its seven bridges exactly once. This result did not depend on the lengths of the bridges or on their distance from one another, but only on connectivity properties: which bridges connect to which islands or riverbanks. This Seven Bridges of Königsberg problems led to the branch of mathematics known as graph theory.

Similarly, the hairy ball theorem of algebraic topology says that “one cannot comb the hair ball without creating a cowlick”. This fact is immediately convincing to most people, even though they might not recognize the more formal statement of the theorem, that there is no nonvanishing continuous tangent vector field on the sphere. As with the Bridges of Königsberg, the result does not depend on the shape of the sphere; it applies to any kind of smooth blob, as long as it has no holes.

To deal with these problems that do not rely on the exact shape of the objects, one must be clear about just what properties these problems do rely on. From this need arises the notion of homeomorphism. The impossibility of crossing each bridge just once applies to any arrangement of bridges homeomorphic to those in Königsberg, and the hairy ball theorem applies to any space homeomorphic to a sphere.

Intuitively, two spaces are homeomorphic if one can be deformed into the other without cutting or gluing. A traditional joke is that a topologist cannot distinguish a coffee mug from a doughnut, since a sufficiently pliable doughnut could be reshaped to a coffee cup by creating a dimple and progressively enlarging it, while shrinking the hole into a handle.

Homeomorphism can be considered the most basic topological equivalence. Another is homotopy equivalence. This is harder to describe without getting technical, the the essential notion is that two objects are homotopy equivalent if they both result from “squishing” some larger object.

Equivalence classes of the Latin alphabet in the sans-serif font
HomeomorphismHomotopy equivalence
{A,R} {B} {C,G,I,J,L,M,N,S,U,V,W,Z}, {D,O} {E,F,T,Y} {H,K}, {P,Q} {X}{A,R,D,O,P,Q} {B}, {C,E,F,G,H,I,J,K,L,M,N,S,T,U,V,W,X,Y,Z}

An introductory exercise is to classify the uppercase letters of the English alphabet according to homeomorphism and homotopy equivalence. The result depends on the font used, and on whether the strokes making up the letters have some thickness or are ideal curves with no thickness. The figures here use the sans-serif Myriad font and are assumed to consist of ideal curves without thickness. Homotopy equivalence is a coarser relationship than homeomorphism; a homotopy equivalence class can contain several homeomorphism classes. This simple case of homotopy equivalence described above can be used here to show two letters are homotopy equivalent. For example, O O O fits inside P P P and the tail of the P P P can be squished to the “hole” part.

Homeomorphism classes are:

  • no holes corresponding with C , G , I , J , L , M , N , S , U , V , W , Z C, G, I, J, L, M, N, S, U, V, W, Z C,G,I,J,L,M,N,S,U,V,W,Z;
  • no holes and three tails corresponding with E , F , T , Y E, F, T, Y E,F,T,Y;
  • no holes and four tails corresponding with X X X;
  • one hole and no tail corresponding with D , O D, O D,O;
  • one hole and one tail corresponding with P , Q P, Q P,Q;
  • one hole and two tails corresponding with A , R A, R A,R;
  • two hole and no tail corresponding with B B B;
  • and a bar with four tails corresponding with H , K H, K H,K; the “bar” on the K K K is almost too short to set.

Homotopy classes are larger, because the tail can be squished down to a point. They are:

  • one hole,
  • two holes, and
  • no holes

To classify the letters correctly, we must show that two letters in the same class are equivalent and two letters in different classes are not equivalent. In the case of homeomorphism, this can be done by selecting points and showing their removal disconnects the letter differently. For example, X , Y X, Y X,Y are not homeomorphic because removing the center point of the X X X leaves four pieces; whatever point in Y Y Y corresponds to this point, its removal can leave at most three pieces. The case of homotopy equivalence is harder and requires a more elaborate argument showing an algebraic invariant, such as the fundamental group, is different on the supposedly differing classes.

2 History


3 Concepts


3.1 Topologies on sets


3.2 Continuous functions and homeomorphisms


3.3 Manifolds


4 Topics


4.1 General topology


4.2 Algebraic topology


4.3 Differential topology


4.4 Geometric topology


4.5 Generalizations


5 Applications


5.1 Biology


5.2 Computer science


5.3 Physics


5.4 Robotics


5.5 Games and puzzles


5.6 Fiber art


6 See also


7 References


7.1 Citations


7.2 Bibliography


8 Further reading


9 External links

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值