Coefficient matrix

In linear algebra, a coefficient matrix is a matrix consisting of the coefficients of the variables in a set of linear equations. The matrix is used in solving systems of linear equations.

1 Coefficient matrix

In general, a system with m m m linear equations and n n n unknowns can be written as
a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2      ⋮ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m {\displaystyle {\begin{aligned}a_{11}x_{1}+a_{12}x_{2}+\cdots +a_{1n}x_{n}&=b_{1}\\a_{21}x_{1}+a_{22}x_{2}+\cdots +a_{2n}x_{n}&=b_{2}\\&\;\;\vdots \\a_{m1}x_{1}+a_{m2}x_{2}+\cdots +a_{mn}x_{n}&=b_{m}\end{aligned}}} a11x1+a12x2++a1nxna21x1+a22x2++a2nxnam1x1+am2x2++amnxn=b1=b2=bm
where x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} x1,x2,,xn are the unknowns and the numbers a 11 , a 12 , … , a m n {\displaystyle a_{11},a_{12},\ldots ,a_{mn}} a11,a12,,amn are the coefficients of the system. The coefficient matrix is the m × n m×n m×n matrix with the coefficient a i j {\displaystyle a_{ij}} aij as the ( i , j   ) (i, j ) (i,j)th entry:
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] {\displaystyle {\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{bmatrix}}} a11a21am1a12a22am2a1na2namn

Then the above set of equations can be expressed more succinctly as
A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } Ax=b
where A A A is the coefficient matrix and b b b is the column vector of constant terms.

2 Relation of its properties to properties of the equation system

By the Rouché–Capelli theorem, the system of equations is inconsistent, meaning it has no solutions, if the rank of the augmented matrix (the coefficient matrix augmented with an additional column consisting of the vector b b b) is greater than the rank of the coefficient matrix. If, on the other hand, the ranks of these two matrices are equal, the system must have at least one solution. The solution is unique if and only if the rank r r r equals the number n n n of variables. Otherwise the general solution has n – r n – r nr free parameters; hence in such a case there are an infinitude of solutions, which can be found by imposing arbitrary values on n – r n – r nr of the variables and solving the resulting system for its unique solution; different choices of which variables to fix, and different fixed values of them, give different system solutions.

3 Dynamic equations

A first-order matrix difference equation with constant term can be written as
y t + 1 = A y t + c , {\displaystyle \mathbf {y} _{t+1}=A\mathbf {y} _{t}+\mathbf {c} ,} yt+1=Ayt+c,
where A A A is n × n and y y y and c c c are n × 1. This system converges to its steady-state level of y y y if and only if the absolute values of all n n n eigenvalues of A A A are less than 1 1 1.

A first-order matrix differential equation with constant term can be written as
d y d t = A y ( t ) + c . {\displaystyle {\frac {d\mathbf {y} }{dt}}=A\mathbf {y} (t)+\mathbf {c} .} dtdy=Ay(t)+c.
This system is stable if and only if all n n n eigenvalues of A A A have negative real parts.

4 References

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值