LU decomposition

In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix decomposition). The product sometimes includes a permutation matrix as well. L U LU LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix. The L U LU LU decomposition was introduced by the Polish mathematician Tadeusz Banachiewicz in 1938.

1 Definitions

Let A A A be a square matrix. An LU factorization refers to the factorization of A A A, with proper row and/or column orderings or permutations, into two factors – a lower triangular matrix L L L and an upper triangular matrix U U U:
A = L U . {\displaystyle A=LU.} A=LU.

In the lower triangular matrix all elements above the diagonal are zero, in the upper triangular matrix, all the elements below the diagonal are zero. For example, for a 3 × 3 3 × 3 3×3 matrix A A A, its L U LU LU decomposition looks like this:
[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] = [ ℓ 11 0 0 ℓ 21 ℓ 22 0 ℓ 31 ℓ 32 ℓ 33 ] [ u 11 u 12 u 13 0 u 22 u 23 0 0 u 33 ] . {\displaystyle {\begin{bmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{bmatrix}}={\begin{bmatrix}\ell _{11}&0&0\\\ell _{21}&\ell _{22}&0\\\ell _{31}&\ell _{32}&\ell _{33}\end{bmatrix}}{\begin{bmatrix}u_{11}&u_{12}&u_{13}\\0&u_{22}&u_{23}\\0&0&u_{33}\end{bmatrix}}.} a11a21a31a12a22a32a13a23a33 = 112131022320033 u1100u12u220u13u23u33 .
Without a proper ordering or permutations in the matrix, the factorization may fail to materialize. For example, it is easy to verify (by expanding the matrix multiplication) that a 11 = ℓ 11 u 11 {\textstyle a_{11}=\ell _{11}u_{11}} a11=11u11. If a 11 = 0 {\textstyle a_{11}=0} a11=0, then at least one of ℓ 11 {\textstyle \ell _{11}} 11 and u 11 {\textstyle u_{11}} u11 has to be zero, which implies that either L L L or U U U is singular. This is impossible if A A A is nonsingular (invertible). This is a procedural problem. It can be removed by simply reordering the rows of A A A so that the first element of the permuted matrix is nonzero. The same problem in subsequent factorization steps can be removed the same way; see the basic procedure below.

在这里插入图片描述

LDU decomposition of a Walsh matrix

1.1 LU factorization with partial pivoting

It turns out that a proper permutation in rows (or columns) is sufficient for LU factorization. LU factorization with partial pivoting (LUP) refers often to LU factorization with row permutations only:
P A = L U , {\displaystyle PA=LU,} PA=LU,
where L L L and U U U are again lower and upper triangular matrices, and P P P is a permutation matrix, which, when left-multiplied to A A A, reorders the rows of A A A. It turns out that all square matrices can be factorized in this form, and the factorization is numerically stable in practice. This makes LUP decomposition a useful technique in practice.

1.2 LU factorization with full pivoting

An LU factorization with full pivoting involves both row and column permutations:
P A Q = L U , {\displaystyle PAQ=LU,} PAQ=LU,
where L , U L, U L,U and P P P are defined as before, and Q Q Q is a permutation matrix that reorders the columns of A A A.

1.3 Lower-diagonal-upper (LDU) decomposition

A Lower-diagonal-upper (LDU) decomposition is a decomposition of the form
A = L D U , {\displaystyle A=LDU,} A=LDU,
where D D D is a diagonal matrix, and L L L and U U U are unitriangular matrices, meaning that all the entries on the diagonals of L L L and U U U are one.

1.4 Rectangular matrices

Above we required that A A A be a square matrix, but these decompositions can all be generalized to rectangular matrices as well. In that case, L L L and D D D are square matrices both of which have the same number of rows as A A A, and U U U has exactly the same dimensions as A A A. Upper triangular should be interpreted as having only zero entries below the main diagonal, which starts at the upper left corner. Similarly, the more precise term for U U U is that it is the “row echelon form” of the matrix A A A.

2 Example

We factorize the following 2-by-2 matrix:
[ 4 3 6 3 ] = [ ℓ 11 0 ℓ 21 ℓ 22 ] [ u 11 u 12 0 u 22 ] . {\displaystyle {\begin{bmatrix}4&3\\6&3\end{bmatrix}}={\begin{bmatrix}\ell _{11}&0\\\ell _{21}&\ell _{22}\end{bmatrix}}{\begin{bmatrix}u_{11}&u_{12}\\0&u_{22}\end{bmatrix}}.} [4633]=[1121022][u110u12u22].
One way to find the LU decomposition of this simple matrix would be to simply solve the linear equations by inspection. Expanding the matrix multiplication gives
ℓ 11 ⋅ u 11 + 0 ⋅ 0 = 4 ℓ 11 ⋅ u 12 + 0 ⋅ u 22 = 3 ℓ 21 ⋅ u 11 + ℓ 22 ⋅ 0 = 6 ℓ 21 ⋅ u 12 + ℓ 22 ⋅ u 22 = 3. {\displaystyle {\begin{aligned}\ell _{11}\cdot u_{11}+0\cdot 0&=4\\\ell _{11}\cdot u_{12}+0\cdot u_{22}&=3\\\ell _{21}\cdot u_{11}+\ell _{22}\cdot 0&=6\\\ell _{21}\cdot u_{12}+\ell _{22}\cdot u_{22}&=3.\end{aligned}}} 11u11+0011u12+0u2221u11+22021u12+22u22=4=3=6=3.
This system of equations is underdetermined. In this case any two non-zero elements of L L L and U U U matrices are parameters of the solution and can be set arbitrarily to any non-zero value. Therefore, to find the unique LU decomposition, it is necessary to put some restriction on L L L and U U U matrices. For example, we can conveniently require the lower triangular matrix L L L to be a unit triangular matrix (i.e. set all the entries of its main diagonal to ones). Then the system of equations has the following solution:
ℓ 11 = ℓ 22 = 1 ℓ 21 = 1.5 u 11 = 4 u 12 = 3 u 22 = − 1.5 {\displaystyle {\begin{aligned}\ell _{11}=\ell _{22}&=1\\\ell _{21}&=1.5\\u_{11}&=4\\u_{12}&=3\\u_{22}&=-1.5\end{aligned}}} 11=2221u11u12u22=1=1.5=4=3=1.5
Substituting these values into the LU decomposition above yields
[ 4 3 6 3 ] = [ 1 0 1.5 1 ] [ 4 3 0 − 1.5 ] . {\displaystyle {\begin{bmatrix}4&3\\6&3\end{bmatrix}}={\begin{bmatrix}1&0\\1.5&1\end{bmatrix}}{\begin{bmatrix}4&3\\0&-1.5\end{bmatrix}}.} [4633]=[11.501][4031.5].

3 Existence and uniqueness

3.1 Square matrices

Any square matrix A {\textstyle A} A admits L U P LUP LUP and P L U PLU PLU factorizations. If A {\textstyle A} A is invertible, then it admits an L U LU LU (or L D U LDU LDU) factorization if and only if all its leading principal minors are nonzero (for example [ 0 1 1 0 ] {\displaystyle {\begin{bmatrix}0&1\\1&0\end{bmatrix}}} [0110] does not admit an L U LU LU or L D U LDU LDU factorization). If A {\textstyle A} A is a singular matrix of rank k {\textstyle k} k, then it admits an L U LU LU factorization if the first k {\textstyle k} k leading principal minors are nonzero, although the converse is not true.

If a square, invertible matrix has an L D U LDU LDU (factorization with all diagonal entries of L L L and U U U equal to 1 1 1), then the factorization is unique. In that case, the L U LU LU factorization is also unique if we require that the diagonal of L {\textstyle L} L (or U {\textstyle U} U) consists of ones.

In general, any square matrix A n × n {\displaystyle A_{n\times n}} An×n could have one of the following:

  • a unique L U LU LU factorization (as mentioned above)
  • infinitely many L U LU LU factorizations if two or more of any first ( n − 1 ) (n−1) (n1) columns are linearly dependent or any of the first ( n − 1 ) (n−1) (n1) columns are 0 0 0, then A A A has infinitely many LU factorizations.
  • no L U LU LU factorization if the first ( n − 1 ) (n−1) (n1) columns are non-zero and linearly independent and at least one leading principal minor is zero.

In Case 3 3 3, one can approximate an L U LU LU factorization by changing a diagonal entry a j j {\displaystyle a_{jj}} ajj to a j j ± ε {\displaystyle a_{jj}\pm \varepsilon } ajj±ε to avoid a zero leading principal minor.

3.2 Symmetric positive-definite matrices

If A A A is a symmetric (or Hermitian, if A A A is complex) positive-definite matrix, we can arrange matters so that U U U is the conjugate transpose of L L L. That is, we can write A A A as
A = L L ∗ .   {\displaystyle A=LL^{*}.\,} A=LL.
This decomposition is called the Cholesky decomposition. The Cholesky decomposition always exists and is unique — provided the matrix is positive definite. Furthermore, computing the Cholesky decomposition is more efficient and numerically more stable than computing some other L U LU LU decompositions.

3.3 General matrices

For a (not necessarily invertible) matrix over any field, the exact necessary and sufficient conditions under which it has an L U LU LU factorization are known. The conditions are expressed in terms of the ranks of certain submatrices. The Gaussian elimination algorithm for obtaining L U LU LU decomposition has also been extended to this most general case.

4 Algorithms

4.1 Closed formula

4.2 Using Gaussian elimination

4.3 Through recursion

4.4 Randomized algorithm

4.5 Theoretical complexity

4.6 Sparse-matrix decomposition

5 Applications

5.1 Solving linear equations

5.2 Inverting a matrix

5.3 Computing the determinant

6 Code examples

6.1 C code example

6.2 C# code example

6.3 MATLAB code example

7 See also

8 Notes

9 References

10 External links

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值