Implicit function

In mathematics, an implicit equation is a relation of the form R ( x 1 , … , x n ) = 0 , {\displaystyle R(x_{1},\dots ,x_{n})=0,} R(x1,,xn)=0, where R R R is a function of several variables (often a polynomial). For example, the implicit equation of the unit circle is x 2 + y 2 − 1 = 0. {\displaystyle x^{2}+y^{2}-1=0.} x2+y21=0.

An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments.  For example, the equation x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0} x2+y21=0 of the unit circle defines y y y as an implicit function of x x x if − 1 ≤ x ≤ 1 −1 ≤ x ≤ 1 1x1, and one restricts y y y to nonnegative values.

The implicit function theorem provides conditions under which some kinds of relations define an implicit function, namely relations defined as the indicator function of the zero set of some continuously differentiable multivariate function.

1 Examples

1.1 Inverse functions

A common type of implicit function is an inverse function. Not all functions have a unique inverse function. If g g g is a function of x x x that has a unique inverse, then the inverse function of g g g, called g − 1 g^{−1} g1, is the unique function giving a solution of the equation
y = g ( x ) {\displaystyle y=g(x)} y=g(x)
for x x x in terms of y y y. This solution can then be written as
x = g − 1 ( y )   . {\displaystyle x=g^{-1}(y)\,.} x=g1(y).
Defining g − 1 g^{−1} g1 as the inverse of g g g is an implicit definition. For some functions g g g, g − 1 ( y ) g^{−1}(y) g1(y) can be written out explicitly as a closed-form expression — for instance, if g ( x ) = 2 x − 1 g(x) = 2x − 1 g(x)=2x1, then g − 1 ( y ) = 1 / 2 ( y + 1 ) g^{−1}(y) = 1/2(y + 1) g1(y)=1/2(y+1). However, this is often not possible, or only by introducing a new notation (as in the product log example below).

Intuitively, an inverse function is obtained from g g g by interchanging the roles of the dependent and independent variables.

Example: The product log is an implicit function giving the solution for x x x of the equation y − x e x = 0. y − xe^x = 0. yxex=0.

1.2 Algebraic functions

Main article: Algebraic function

An algebraic function is a function that satisfies a polynomial equation whose coefficients are themselves polynomials. For example, an algebraic function in one variable x x x gives a solution for y y y of an equation
a n ( x ) y n + a n − 1 ( x ) y n − 1 + ⋯ + a 0 ( x ) = 0   , {\displaystyle a_{n}(x)y^{n}+a_{n-1}(x)y^{n-1}+\cdots +a_{0}(x)=0\,,} an(x)yn+an1(x)yn1++a0(x)=0,
where the coefficients a i ( x ) a_i(x) ai(x) are polynomial functions of x x x. This algebraic function can be written as the right side of the solution equation y = f ( x ) y = f(x) y=f(x). Written like this, f f f is a multi-valued implicit function.

Algebraic functions play an important role in mathematical analysis and algebraic geometry. A simple example of an algebraic function is given by the left side of the unit circle equation:
x 2 + y 2 − 1 = 0   . {\displaystyle x^{2}+y^{2}-1=0\,.} x2+y21=0.
Solving for y y y gives an explicit solution:
y = ± 1 − x 2   . {\displaystyle y=\pm {\sqrt {1-x^{2}}}\,.} y=±1x2 .
But even without specifying this explicit solution, it is possible to refer to the implicit solution of the unit circle equation as y = f ( x ) y = f(x) y=f(x), where f f f is the multi-valued implicit function.

While explicit solutions can be found for equations that are quadratic, cubic, and quartic in y y y, the same is not in general true for quintic and higher degree equations, such as
y 5 + 2 y 4 − 7 y 3 + 3 y 2 − 6 y − x = 0   . {\displaystyle y^{5}+2y^{4}-7y^{3}+3y^{2}-6y-x=0\,.} y5+2y47y3+3y26yx=0.
Nevertheless, one can still refer to the implicit solution y = f ( x ) y = f(x) y=f(x) involving the multi-valued implicit function f f f.

2 Caveats

Not every equation R ( x , y ) = 0 R(x, y) = 0 R(x,y)=0 implies a graph of a single-valued function, the circle equation being one prominent example. Another example is an implicit function given by x − C ( y ) = 0 x − C(y) = 0 xC(y)=0 where C C C is a cubic polynomial having a “hump” in its graph. Thus, for an implicit function to be a true (single-valued) function it might be necessary to use just part of the graph. An implicit function can sometimes be successfully defined as a true function only after “zooming in” on some part of the x x x-axis and “cutting away” some unwanted function branches. Then an equation expressing y y y as an implicit function of the other variables can be written.

The defining equation R ( x , y ) = 0 R(x, y) = 0 R(x,y)=0 can also have other pathologies. For example, the equation x = 0 x = 0 x=0 does not imply a function f ( x ) f(x) f(x) giving solutions for y y y at all; it is a vertical line. In order to avoid a problem like this, various constraints are frequently imposed on the allowable sorts of equations or on the domain. The implicit function theorem provides a uniform way of handling these sorts of pathologies.

3 Implicit differentiation

3.1 Examples

3.1.1 Example 1

3.1.2 Example 2

3.1.3 Example 3

3.2 General formula for derivative of implicit function

4 Implicit function theorem

5 In algebraic geometry

6 In differential equations

7 Applications in economics

7.1 Marginal rate of substitution

7.2 Marginal rate of technical substitution

7.3 Optimization

8 See also

9 References

10 Further reading

11 External links

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值