9. The Implicit Function Theorem

本文深入探讨了隐函数定理,揭示了隐函数在某点可微的充要条件,即关于因变量的导数在该点是非奇异的。通过一系列练习题,解释了如何利用隐函数定理求解微分方程并讨论了在不同情况下解的存在性和唯一性。
摘要由CSDN通过智能技术生成

本节是另一个重要的定理:隐函数定理,隐函数表示的函数在某一点(a,b)可微的充要条件是隐函数关于因变量的导数在(a,b)点是非奇异的,并且可以显式计算出隐函数的导数。

Exercises

Exercise 1. Let f : R 3 → R 2 f:\mathbf{R}^3\to\mathbf{R}^2 f:R3R2 be of class C 1 C^1 C1; write f f f in the form f ( x , y 1 , y 2 ) f(x,y_1,y_2) f(x,y1,y2). Assume that f ( 3 , − 1 , 2 ) = 0 f(3,-1,2)=0 f(3,1,2)=0 and
D f ( 3 , − 1 , 2 ) = [ 1 2 1 1 − 1 1 ] . Df(3,-1,2)=\begin{bmatrix}1&2&1\\1&-1&1\end{bmatrix}. Df(3,1,2)=[112111].
( a ) Show there is a function g : B → R 2 g:B\to\mathbf{R}^2 g:BR2 of class C 1 C^1 C1 defined on an open set B B B in R \mathbf{R} R such that f ( x , g 1 ( x ) , g 2 ( x ) ) = 0 f(x,g_1(x),g_2(x))=0 f(x,g1(x),g2(x))=0 for x ∈ B x\in B xB, and g ( 3 ) = ( − 1 , 2 ) g(3)=(-1,2) g(3)=(1,2).
( b ) Find D g ( 3 ) Dg(3) Dg(3).
( c ) Discuss the problem of solving the equation f ( x , y 1 , y 2 ) = 0 f(x,y_1,y_2)=0 f(x,y1,y2)=0 for an arbitrary pair of the unknowns in terms of the third, near the point ( 3 , − 1 , 2 ) (3,-1,2) (3,1,2).
Solution:
( a ) Since
det ⁡ ∂ f ( x , y 1 , y 2 ) ∂ ( y 1 , y 2 ) ( 3 , − 1 , 2 ) = det ⁡ [ 2 1 − 1 1 ] = 5 ≠ 0 \det\frac{\partial f(x,y_1,y_2)}{\partial(y_1,y_2)}(3,-1,2)=\det\begin{bmatrix}2&1\\-1&1\end{bmatrix}=5\neq 0 det(y1,y2)f(x,y1,y2)(3,1,2)=det[2111]=5=0
by the implicit function theorem, the conclusion holds.
( b ) We have
D g ( 3 ) = − [ ∂ f ( x , y 1 , y 2 ) ∂ ( y 1 , y 2 ) ( 3 , − 1 , 2 ) ] − 1 ⋅ ∂ f ( x , y 1 , y 2 ) ∂ ( x ) ( 3 , − 1 , 2 ) = − [ 2 1 − 1 1 ] − 1 ⋅ [ 1 1 ] = 1 3 [ − 1 1 − 1 2 ] ⋅ [ 1 1 ] = 1 3 [ 0 1 ] \begin{aligned}Dg(3)&=-\left[\frac{\partial f(x,y_1,y_2)}{\partial(y_1,y_2)}(3,-1,2)\right]^{-1}\cdot\frac{\partial f(x,y_1,y_2)}{\partial(x)}(3,-1,2)\\&=-\begin{bmatrix}2&1\\-1&1\end{bmatrix}^{-1}\cdot\begin{bmatrix}1\\1\end{bmatrix}\\&=\frac{1}{3}\begin{bmatrix}-1&1\\-1&2\end{bmatrix}\cdot\begin{bmatrix}1\\1\end{bmatrix}=\frac{1}{3}\begin{bmatrix}0\\1\end{bmatrix}\end{aligned} Dg(3)=[(y1,y2)f(x,y1,y2)(3,1,2)]1(x)f(x,y1,y2)(3,1,2)=[2111]1[11]=31[1112][11]=31[01]
( c ) By some easy calculation we can know that
det ⁡ ∂ f ( x , y 1 , y 2 ) ∂ ( y 1 , y 2 ) ( 3 , − 1 , 2 ) ≠ 0 , det ⁡ ∂ f ( x , y 1 , y 2 ) ∂ ( x , y 1 ) ( 3 , − 1 , 2 ) ≠ 0 \det\frac{\partial f(x,y_1,y_2)}{\partial(y_1,y_2)}(3,-1,2)\neq 0,\quad\det\frac{\partial f(x,y_1,y_2)}{\partial(x,y_1)}(3,-1,2)\neq0 det(y1,y2)f(x,y1,y2)(3,1,2)=0,det(x,y1)f(x,y1,y2)(3,1,2)=0
thus the equation f ( x , y 1 , y 2 ) = 0 f(x,y_1,y_2)=0 f(x,y1,y2)=0 can be solved for ( y 1 , y 2 ) (y_1,y_2) (y1,y2) in terms of x x x, and for ( x , y 1 ) (x,y_1) (x,y1) in terms of y 2 y_2 y2, however, as
det ⁡ ∂ f ( x , y 1 , y 2 ) ∂ ( x , y 2 ) ( 3 , − 1 , 2 ) = det ⁡ [ 1 1 1 1 ] = 0 \det\frac{\partial f(x,y_1,y_2)}{\partial(x,y_2)}(3,-1,2)=\det\begin{bmatrix}1&1\\1&1\end{bmatrix}=0 det(x,y2)f(x,y1,y2)(3,1,2)=det[1111]=0
the equation f ( x , y 1 , y 2 ) = 0 f(x,y_1,y_2)=0 f(x,y1,y2)=0 cannot be solved for ( x , y 2 ) (x,y_2) (x,y2) in terms of y 1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值