Infimum and supremum

In mathematics, the infimum (abbreviated inf; plural infima) of a subset {\displaystyle S}S of a partially ordered set {\displaystyle P}P is a greatest element in {\displaystyle P}P that is less than or equal to each element of {\displaystyle S,}S, if such an element exists.[1] Consequently, the term greatest lower bound (abbreviated as GLB) is also commonly used.[1]

The supremum (abbreviated sup; plural suprema) of a subset {\displaystyle S}S of a partially ordered set {\displaystyle P}P is the least element in {\displaystyle P}P that is greater than or equal to each element of {\displaystyle S,}S, if such an element exists.[1] Consequently, the supremum is also referred to as the least upper bound (or LUB).[1]

The infimum is in a precise sense dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered.

The concepts of infimum and supremum are close to minimum and maximum, but are more useful in analysis because they better characterize special sets which may have no minimum or maximum. For instance, the set of positive real numbers {\displaystyle \mathbb {R} ^{+}}\mathbb{R} ^{+} (not including {\displaystyle 0}{\displaystyle 0}) does not have a minimum, because any given element of {\displaystyle \mathbb {R} ^{+}}\mathbb{R} ^{+} could simply be divided in half resulting in a smaller number that is still in {\displaystyle \mathbb {R} ^{+}.}{\displaystyle \mathbb {R} ^{+}.} There is, however, exactly one infimum of the positive real numbers relative to the real numbers: {\displaystyle 0,}{\displaystyle 0,} which is smaller than all the positive real numbers and greater than any other real number which could be used as a lower bound. An infimum of a set is always and only defined relative to a superset of the set in question. For example, there is no infimum of the positive real numbers inside the positive real numbers (as their own superset), nor any infimum of the positive real numbers inside the complex numbers with positive real part.

在这里插入图片描述

A set {\displaystyle P}P of real numbers (hollow and filled circles), a subset {\displaystyle S}S of {\displaystyle P}P (filled circles), and the infimum of {\displaystyle S.}S. Note that for finite or totally ordered sets, the infimum and the minimum are equal.

在这里插入图片描述

A set {\displaystyle A}A of real numbers (blue circles), a set of upper bounds of {\displaystyle A}A (red diamond and circles), and the smallest such upper bound, that is, the supremum of {\displaystyle A}A (red diamond).

1 Formal definition

A lower bound of a subset {\displaystyle S}S of a partially ordered set {\displaystyle (P,\leq )}{\displaystyle (P,\leq )} is an element {\displaystyle a}a of {\displaystyle P}P such that

{\displaystyle a\leq x}{\displaystyle a\leq x} for all {\displaystyle x\in S.}{\displaystyle x\in S.}
A lower bound {\displaystyle a}a of {\displaystyle S}S is called an infimum (or greatest lower bound, or meet) of {\displaystyle S}S if

for all lower bounds {\displaystyle y}y of {\displaystyle S}S in {\displaystyle P,}P, {\displaystyle y\leq a}{\displaystyle y\leq a} ({\displaystyle a}a is larger than or equal to any other lower bound).
Similarly, an upper bound of a subset {\displaystyle S}S of a partially ordered set {\displaystyle (P,\leq )}{\displaystyle (P,\leq )} is an element {\displaystyle b}b of {\displaystyle P}P such that

{\displaystyle b\geq x}{\displaystyle b\geq x} for all {\displaystyle x\in S.}{\displaystyle x\in S.}
An upper bound {\displaystyle b}b of {\displaystyle S}S is called a supremum (or least upper bound, or join) of {\displaystyle S}S if

for all upper bounds {\displaystyle z}z of {\displaystyle S}S in {\displaystyle P,}P, {\displaystyle z\geq b}{\displaystyle z\geq b} ({\displaystyle b}b is less than or equal to any other upper bound).

在这里插入图片描述

supremum = least upper bound

2 Existence and uniqueness

3 Relation to maximum and minimum elements

3.1 Minimal upper bounds

3.2 Least-upper-bound property

4 Infima and suprema of real numbers

4.1 Properties

5 Duality

6 Examples

6.1 Infima

6.2 Suprema

7 See also

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ulint* rec_get_offsets_func( /*=================*/ const rec_t* rec, /*!< in: physical record */ const dict_index_t* index, /*!< in: record descriptor */ ulint* offsets,/*!< in/out: array consisting of offsets[0] allocated elements, or an array from rec_get_offsets(), or NULL */ ulint n_fields,/*!< in: maximum number of initialized fields (ULINT_UNDEFINED if all fields) */ #ifdef UNIV_DEBUG const char* file, /*!< in: file name where called */ ulint line, /*!< in: line number where called */ #endif /* UNIV_DEBUG */ mem_heap_t** heap) /*!< in/out: memory heap */ { ulint n; ulint size; ut_ad(rec); ut_ad(index); ut_ad(heap); if (dict_table_is_comp(index->table)) { switch (UNIV_EXPECT(rec_get_status(rec), REC_STATUS_ORDINARY)) { case REC_STATUS_ORDINARY: n = dict_index_get_n_fields(index); break; case REC_STATUS_NODE_PTR: /* Node pointer records consist of the uniquely identifying fields of the record followed by a child page number field. */ n = dict_index_get_n_unique_in_tree_nonleaf(index) + 1; break; case REC_STATUS_INFIMUM: case REC_STATUS_SUPREMUM: /* infimum or supremum record */ n = 1; break; default: ut_error; return(NULL); } } else { n = rec_get_n_fields_old(rec); } if (UNIV_UNLIKELY(n_fields < n)) { n = n_fields; } /* The offsets header consists of the allocation size at offsets[0] and the REC_OFFS_HEADER_SIZE bytes. */ size = n + (1 + REC_OFFS_HEADER_SIZE); if (UNIV_UNLIKELY(!offsets) || UNIV_UNLIKELY(rec_offs_get_n_alloc(offsets) < size)) { if (UNIV_UNLIKELY(!*heap)) { *heap = mem_heap_create_at(size * sizeof(ulint), file, line); } offsets = static_cast<ulint*>( mem_heap_alloc(*heap, size * sizeof(ulint))); rec_offs_set_n_alloc(offsets, size); } rec_offs_set_n_fields(offsets, n); rec_init_offsets(rec, index, offsets); return(offsets); }帮我以注释的形式解释下这段代码吧
06-03
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值