Perfect matching

In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G = (V, E), a perfect matching in G is a subset M of edge set E, such that every vertex in the vertex set V is adjacent to exactly one edge in M.

A perfect matching is also called a 1-factor; see Graph factorization for an explanation of this term. In some literature, the term complete matching is used.

Every perfect matching is a maximum-cardinality matching, but the opposite is not true. For example, consider the following graphs:[1]
在这里插入图片描述
In graph (b) there is a perfect matching (of size 3) since all 6 vertices are matched; in graphs (a) and © there is a maximum-cardinality matching (of size 2) which is not perfect, since some vertices are unmatched.

A perfect matching is also a minimum-size edge cover. If there is a perfect matching, then both the matching number and the edge cover number equal |V| / 2.

A perfect matching can only occur when the graph has an even number of vertices. A near-perfect matching is one in which exactly one vertex is unmatched. This can only occur when the graph has an odd number of vertices, and such a matching must be maximum. In the above figure, part © shows a near-perfect matching. If, for every vertex in a graph, there is a near-perfect matching that omits only that vertex, the graph is also called factor-critical.

1 Characterizations

Hall’s marriage theorem provides a characterization of bipartite graphs which have a perfect matching.

The Tutte theorem provides a characterization for arbitrary graphs.

A perfect matching is a spanning 1-regular subgraph, a.k.a. a 1-factor. In general, a spanning k-regular subgraph is a k-factor.

A spectral characterization for a graph to have a perfect matching is given by Hassani Monfared and Mallik as follows: Let {\displaystyle G}G be a graph on even {\displaystyle n}n vertices and {\displaystyle \lambda _{1}>\lambda _{2}>\ldots >\lambda _{\frac {n}{2}}>0}{\displaystyle \lambda _{1}>\lambda _{2}>\ldots >\lambda _{\frac {n}{2}}>0} be {\displaystyle {\frac {n}{2}}}{\frac {n}{2}} distinct nonzero purely imaginary numbers. Then {\displaystyle G}G has a perfect matching if and only if there is a real skew-symmetric matrix {\displaystyle A}A with graph {\displaystyle G}G and eigenvalues {\displaystyle \pm \lambda _{1},\pm \lambda _{2},\ldots ,\pm \lambda _{\frac {n}{2}}}{\displaystyle \pm \lambda _{1},\pm \lambda _{2},\ldots ,\pm \lambda _{\frac {n}{2}}}.[2] Note that the (simple) graph of a real symmetric or skew-symmetric matrix {\displaystyle A}A of order {\displaystyle n}n has {\displaystyle n}n vertices and edges given by the nonzero off-diagonal entries of {\displaystyle A}A.

2 Computation

Deciding whether a graph admits a perfect matching can be done in polynomial time, using any algorithm for finding a maximum cardinality matching.

However, counting the number of perfect matchings, even in bipartite graphs, is #P-complete. This is because computing the permanent of an arbitrary 0–1 matrix (another #P-complete problem) is the same as computing the number of perfect matchings in the bipartite graph having the given matrix as its biadjacency matrix.

A remarkable theorem of Kasteleyn states that the number of perfect matchings in a planar graph can be computed exactly in polynomial time via the FKT algorithm.

The number of perfect matchings in a complete graph Kn (with n even) is given by the double factorial: {\displaystyle (n-1)!!}{\displaystyle (n-1)!!}[3]

3 Perfect matching polytope

Main article: Matching polytope
The perfect matching polytope of a graph is a polytope in R|E| in which each corner is an incidence vector of a perfect matching.

4 See also

Envy-free matching
Maximum-cardinality matching
Perfect matching in high-degree hypergraphs
Hall-type theorems for hypergraphs

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值