In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order {\displaystyle n}n. Any two square matrices of the same order can be added and multiplied.
Square matrices are often used to represent simple linear transformations, such as shearing or rotation. For example, if {\displaystyle R}R is a square matrix representing a rotation (rotation matrix) and {\displaystyle \mathbf {v} }\mathbf {v} is a column vector describing the position of a point in space, the product {\displaystyle R\mathbf {v} }{\displaystyle R\mathbf {v} } yields another column vector describing the position of that point after that rotation. If {\displaystyle \mathbf {v} }\mathbf {v} is a row vector, the same transformation can be obtained using {\displaystyle \mathbf {v} R^{\mathsf {T}}}{\displaystyle \mathbf {v} R^{\mathsf {T}}}, where {\displaystyle R^{\mathsf {T}}}{\displaystyle R^{\mathsf {T}}} is the transpose of {\displaystyle R}R.
A square matrix of order 4. The entries {\displaystyle a_{ii}}a_{ii} form the main diagonal of a square matrix. For instance, the main diagonal of the 4×4 matrix above contains the elements a11 = 9, a22 = 11, a33 = 4, a44 = 10.
Contents
1 Main diagonal
2 Special kinds
2.1 Diagonal or triangular matrix
2.2 Identity matrix
2.3 Invertible matrix and its inverse
2.4 Symmetric or skew-symmetric matrix
2.5 Definite matrix
2.6 Orthogonal matrix
2.7 Normal matrix
3 Operations
3.1 Trace
3.2 Determinant
3.3 Eigenvalues and eigenvectors
4 See also