Square matrix

In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order {\displaystyle n}n. Any two square matrices of the same order can be added and multiplied.

Square matrices are often used to represent simple linear transformations, such as shearing or rotation. For example, if {\displaystyle R}R is a square matrix representing a rotation (rotation matrix) and {\displaystyle \mathbf {v} }\mathbf {v} is a column vector describing the position of a point in space, the product {\displaystyle R\mathbf {v} }{\displaystyle R\mathbf {v} } yields another column vector describing the position of that point after that rotation. If {\displaystyle \mathbf {v} }\mathbf {v} is a row vector, the same transformation can be obtained using {\displaystyle \mathbf {v} R^{\mathsf {T}}}{\displaystyle \mathbf {v} R^{\mathsf {T}}}, where {\displaystyle R^{\mathsf {T}}}{\displaystyle R^{\mathsf {T}}} is the transpose of {\displaystyle R}R.

在这里插入图片描述

A square matrix of order 4. The entries {\displaystyle a_{ii}}a_{ii} form the main diagonal of a square matrix. For instance, the main diagonal of the 4×4 matrix above contains the elements a11 = 9, a22 = 11, a33 = 4, a44 = 10.

Contents
1 Main diagonal
2 Special kinds
2.1 Diagonal or triangular matrix
2.2 Identity matrix
2.3 Invertible matrix and its inverse
2.4 Symmetric or skew-symmetric matrix
2.5 Definite matrix
2.6 Orthogonal matrix
2.7 Normal matrix
3 Operations
3.1 Trace
3.2 Determinant
3.3 Eigenvalues and eigenvectors
4 See also

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值