Accumulation point

In mathematics, a limit point, accumulation point, or cluster point of a set {\displaystyle S}S in a topological space {\displaystyle X}X is a point {\displaystyle x}x that can be “approximated” by points of {\displaystyle S}S in the sense that every neighbourhood of {\displaystyle x}x with respect to the topology on {\displaystyle X}X also contains a point of {\displaystyle S}S other than {\displaystyle x}x itself. A limit point of a set {\displaystyle S}S does not itself have to be an element of {\displaystyle S.}S. There is also a closely related concept for sequences. A cluster point or accumulation point of a sequence {\displaystyle (x_{n}){n\in \mathbb {N} }}{\displaystyle (x{n}){n\in \mathbb {N} }} in a topological space {\displaystyle X}X is a point {\displaystyle x}x such that, for every neighbourhood {\displaystyle V}V of {\displaystyle x,}x, there are infinitely many natural numbers {\displaystyle n}n such that {\displaystyle x{n}\in V.}{\displaystyle x_{n}\in V.} This definition of a cluster or accumulation point of a sequence generalizes to nets and filters.

The similarly named notion of a limit point of a sequence[1] (respectively, a limit point of a filter,[2] a limit point of a net) by definition refers to a point that the sequence converges to (respectively, the filter converges to, the net converges to). Importantly, although “limit point of a set” is synonymous with “cluster/accumulation point of a set”, this is not true for sequences (nor nets or filters). That is, the term “limit point of a sequence” is not synonymous with “cluster/accumulation point of a sequence”.

The limit points of a set should not be confused with adherent points (also called points of closure) for which every neighbourhood of {\displaystyle x}x contains a point of {\displaystyle S}S (that is, any point belonging to closure of the set). Unlike for limit points, an adherent point of {\displaystyle S}S may be {\displaystyle x}x itself. A limit point can be characterized as an adherent point that is not an isolated point.

Limit points of a set should also not be confused with boundary points. For example, {\displaystyle 0}{\displaystyle 0} is a boundary point (but not a limit point) of the set {\displaystyle {0}}{0} in {\displaystyle \mathbb {R} }\mathbb {R} with standard topology. However, {\displaystyle 0.5}0.5 is a limit point (though not a boundary point) of interval {\displaystyle [0,1]}[0,1] in {\displaystyle \mathbb {R} }\mathbb {R} with standard topology (for a less trivial example of a limit point, see the first caption).[3][4][5]

This concept profitably generalizes the notion of a limit and is the underpinning of concepts such as closed set and topological closure. Indeed, a set is closed if and only if it contains all of its limit points, and the topological closure operation can be thought of as an operation that enriches a set by uniting it with its limit points.

在这里插入图片描述

With respect to the usual Euclidean topology, the sequence of rational numbers {\displaystyle x_{n}=(-1)^{n}{\frac {n}{n+1}}}{\displaystyle x_{n}=(-1)^{n}{\frac {n}{n+1}}} has no limit (i.e. does not converge), but has two accumulation points (which are considered limit points here), viz. -1 and +1. Thus, thinking of sets, these points are limit points of the set {\displaystyle S={x_{n}}.}{\displaystyle S={x_{n}}.}

Contents
1 Definition
1.1 Accumulation points of a set
1.1.1 Types of accumulation points
1.2 Accumulation points of sequences and nets
2 Relation between accumulation point of a sequence and accumulation point of a set
3 Properties
4 See also

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值