Chinese remainder theorem

中国剩余定理是数学中的一个重要概念,它指出如果知道一个整数被几个互质整数除后的余数,那么可以唯一确定这个整数被这些整数乘积除后的余数。例如,如果一个数n除以3余2,除以5余3,除以7余2,那么n除以105(3、5、7的乘积)的余数是23。这个定理在处理大整数计算时非常有用,因为它允许将大数值问题转化为多个小数值问题来解决。此定理不仅适用于主理想域,还可以推广到任意环。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1).

For example, if we know that the remainder of n divided by 3 is 2, the remainder of n divided by 5 is 3, and the remainder of n divided by 7 is 2, then without knowing the value of n, we can determine that the remainder of n divided by 105 (the product of 3, 5, and 7) is 23. Importantly, this tells us that if n is a natural number less than 105, then 23 is the only possible value of n.

The earliest known statement of the theorem is by the Chinese mathematician Sun-tzu in the Sun-tzu Suan-ching in the 3rd century CE.

The Chinese remainder theorem is widely used for computing with large integers, as it allows replacing a computation for which one knows a bound on the size of the result by several similar computations on small integers.

The Chinese remainder theorem (expressed in terms of congruences) is true over every principal ideal domain. It has been generalized to any ring, with a formulation involving two-sided ideals.

在这里插入图片描述

Sun-tzu’s original formulation: x ≡ 2 (mod 3) ≡ 3 (mod 5) ≡ 2 (mod 7) with the solution x = 23 + 105k, with k an integer

Contents


History
Statement
Proof

Computation

Over principal ideal domains
Over univariate polynomial rings and Euclidean domains

Generalization to non-coprime moduli
Generalization to arbitrary rings

Applications

See also

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值