数学/线性代数 {矩阵的秩,矩阵的子式}

数学/线性代数 {矩阵的秩,矩阵的子式}

@LOC_COUNTER: 1

矩阵的子式

定义

矩阵的子式;

m ∗ n m*n mn的矩阵A, ∀ K ∈ [ 1 , m i n ( m , n ) ] \forall K \in [1, min(m,n)] K[1,min(m,n)], 任选K个行和K个列 他们交点的 k 2 k^2 k2个元素 所组成的行列式(不是矩阵), 称为A的一个K阶子式;

注意区分他和行列式的子式, 矩阵A的子式 不能定义为 ∣ A ∣ |A| A的子式 (因为A可能不是方阵, 如果A是方阵 可以这样定义);

相关术语

非零子式;

如果A的某个子式D 不为零, 则D称为A的一个非零子式;

@DELI;

非零子式的最高阶数;

D = {D1,D2,...}为A的所有非零子式, 令这些行列式的最高阶数 称为: A的非零子式的最高阶数; (如果D为空 (此时A为零矩阵), 则规定A的非零子式的最高阶数为0);

性质

矩阵A的所有子式 为 D = { D 1 , D 2 , . . . } D = \{D1, D2, ...\} D={D1,D2,...}, 那么 A T A^T AT的所有子式集合 也是 D D D;

因为行列式转置 值不变, 因此 A T A^T AT的所有子式 为 { D 1 T , D 2 T , . . . } \{ D1^T, D2^T, ...\} {D1T,D2T,...};

推论: A , A T A, A^T A,AT 他俩的 非零子式的 最高阶数, 是相同的;

@DELI;

如果A为行最简形矩阵, 则A的主元个数 就等于 A的非零子式的最高阶数;

证明: 令K为主元个数, 则我们选择这K个主元所在的K个行(也就是矩阵的前K行) 和 主元所在的K个列 构成一个K阶子式 (他是三角形矩阵 且主对角线元素均为, 因此该K阶子式一定不是0);
. 此时要将他变成 K + 1 K+1 K+1阶子式 那么必然是将下面剩余的 N − K N-K NK中的某一行 添加进来, 这新添加的行 一定是零行, 因此这个 K + 1 K+1 K+1阶子式 有一行为零行 (根据拉普拉斯展开) 故行列式为0;

@DELI;

设A的非零子式的最高阶数为 K K K, 则 ∀ x ∈ [ 1 , K ] , [ A 一定存在 x 阶的非零子式 ] \forall x \in [1, K], [A一定存在x阶的非零子式] x[1,K],[A一定存在x阶的非零子式];

通过拉普拉斯展开可证明, 参见: LINK: (https://editor.csdn.net/md/?articleId=130069550)-(@LOC_1);

注意是: A存在x阶的非零子式, 而不是A的所有x阶子式 都是非零的;

矩阵的秩

定义

对于 m ∗ n m*n mn矩阵A, 矩阵的秩 记作 R ( A ) R(A) R(A) Rank, 是一个 [ 0 , m i n ( m , n ) ] [0,min(m,n)] [0,min(m,n)]的整数, 他的定义为: A的 非零子式的最高阶数;

性质

MARK: @LOC_0;

#R(A,B) = R(B,A)#;

因为对于 [ B , A ] [B,A] [B,A] 可以看做是 对 [ A , B ] [A,B] [A,B] 执行了若干次交换两列变换, 该操作不影响矩阵的秩;

@DELI;

A的秩为0    ⟺    \iff A为零矩阵(即所有元素均为0);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值