矩阵知识:正交矩阵、行列式、子式与代数余子式

一、正交矩阵

1.1 R n R^n Rn的标准正交基

定义

R n 中 的 n 个 向 量 η 1 , η 2 , . . . , η n 满 足 : ( 1 ) 两 两 正 交 : η i T η j = 0 ( i ≠ 0 ) ( 2 ) 都 是 单 位 向 量 , 即 ∣ ∣ η i ∣ ∣ = 1 , i = 1 , 2 , . . . , n 则 称 η 1 , η 2 , . . . , η n 为 R n 的 一 组 标 准 正 交 基 R^n中的n个向量\eta_1,\eta_2,...,\eta_n满足: \\(1)两两正交:\eta_i^T\eta_j=0(i\ne0) \\(2)都是单位向量,即||\eta_i||=1,i=1,2,...,n \\则称\eta_1,\eta_2,...,\eta_n为R^n的一组标准正交基 Rnnη1,η2,...,ηn:(1)ηiTηj=0(i=0)(2)ηi=1,i=1,2,...,nη1,η2,...,ηnRn

注:

  1. 标准正交基不唯一,例如{(1,0),(0,1)}和{( 2 2 , − 2 2 , ( 2 2 , 2 2 ) {\sqrt{2}\over2},{-\sqrt{2}\over2},({\sqrt{2}\over2},{\sqrt{2}\over2}) 22 ,22 ,(22 ,22 ))}
  2. 设 η 1 , η 2 , . . . , η n 为 R n 的 一 组 标 准 正 交 基 , 设 η = ( η 1 , η 2 , . . . , η n ) , 则 : η T η = ( η 1 T η 2 T ⋮ η n T ) ( η 1 η 2 … η n ) = ( η 1 T η 1 η 1 T η 2 … η 1 T η 1 η 2 T η 1 η 2 T η 2 … η 2 T η 1 ⋮ ⋮ ⋱ ⋮ η n T η 1 η n T η 2 … η n T η 1 ) = E 设\eta_1,\eta_2,...,\eta_n为R^n的一组标准正交基,设\eta=(\eta_1,\eta_2,...,\eta_n),则:\\\eta^T\eta=\begin{pmatrix}\eta_1^T\\\eta_2^T\\\vdots\\\eta_n^T\end{pmatrix}(\eta_1\eta_2\dots\eta_n)=\begin{pmatrix}\eta_1^T\eta_1&\eta_1^T\eta_2&\dots&\eta_1^T\eta_1\\\eta_2^T\eta_1&\eta_2^T\eta_2&\dots&\eta_2^T\eta_1\\\vdots&\vdots&\ddots&\vdots\\\eta_n^T\eta_1&\eta_n^T\eta_2&\dots&\eta_n^T\eta_1\end{pmatrix}=E η1,η2,...,ηnRn,η=(η1,η2,...,ηn),ηTη=η1Tη2TηnT(η1η2ηn)=η1Tη1η2Tη1ηnTη1η1Tη2η2Tη2ηnTη2η1Tη1η2Tη1ηnTη1=E
1.2 两组标准正交基间的过渡矩阵

设 ξ 1 , ξ 2 , . . . , ξ n 与 η 1 , η 2 , . . . , η n 是 R n 的 两 组 标 准 正 交 基 , 令 ξ = ( ξ 1 ξ 2 … ξ n ) , η = ( η 1 η 2 … η n ) , 由 ξ 到 η 的 过 渡 矩 阵 为 Q , 即 η = ξ Q , 则 Q T Q = E 设\xi_1,\xi_2,...,\xi_n与\eta_1,\eta_2,...,\eta_n是R^n的两组标准正交基,令\xi=(\xi_1\xi_2\dots \xi_n),\eta=(\eta_1\eta_2\dots\eta_n),由\xi到\eta的过渡矩阵为Q,即\eta=\xi Q,则Q^TQ=E ξ1,ξ2,...,ξnη1,η2,...,ηnRnξ=(ξ1ξ2ξn),η=(η1η2ηn)ξηQη=ξQQTQ=E

证明:
∵ η = ξ Q , η T = Q T ξ T \because\eta=\xi Q,\eta^T=Q^T\xi^T η=ξQ,ηT=QTξT

∴ η T η = Q T ξ T ξ Q \therefore \eta^T\eta=Q^T\xi^T\xi Q ηTη=QTξTξQ

∵ ξ 1 , ξ 2 , . . . , ξ n \because\xi_1,\xi_2,...,\xi_n ξ1,ξ2,...,ξn η 1 , η 2 , . . . , η n \eta_1,\eta_2,...,\eta_n η1,η2,...,ηn均为标准正交基

∴ ξ T ξ = E , η T η = E \therefore\xi^T\xi=E,\eta^T\eta=E ξTξ=E,ηTη=E

∴ Q T Q = E \therefore Q^TQ=E QTQ=E

过渡矩阵的一个例子:

假设 η 1 , η 2 , η 3 \eta_1,\eta_2,\eta_3 η1,η2,η3 R 3 R^3 R3的一组标准正交基,通过证明,我们可以得到

ξ 1 = 1 2 η 1 − 1 2 η 2 \xi_1={1\over\sqrt{2}}\eta_1-{1\over\sqrt{2}}\eta_2 ξ1=2 1η12 1η2

ξ 2 = 1 6 η 1 + 1 6 η 2 − 2 6 η 3 \xi_2={1\over\sqrt{6}}\eta_1+{1\over\sqrt{6}}\eta_2-{2\over\sqrt{6}}\eta_3 ξ2=6 1η1+6 1η26 2η3

ξ 3 = 1 3 η 1 + 1 3 η 2 + 1 3 η 3 \xi_3={1\over\sqrt{3}}\eta_1+{1\over\sqrt{3}}\eta_2+{1\over\sqrt{3}}\eta_3 ξ3=3 1η1+3 1η2+3 1η3

新的到的 ξ \xi ξ同样是一组标准正交基,而这个正交基就是 η \eta η通过过渡矩阵 Q = ( 1 2 1 6 1 3 − 1 2 1 6 1 3 0 − 2 6 1 3 ) Q=\begin{pmatrix}{1\over\sqrt{2}}&{1\over\sqrt{6}}&{1\over\sqrt{3}}\\-{1\over\sqrt{2}}&{1\over\sqrt{6}}&{1\over\sqrt{3}}\\0&-{2\over\sqrt{6}}&{1\over\sqrt{3}}\end{pmatrix} Q=2 12 106 16 16 23 13 13 1得到的:

ξ = η Q \xi=\eta Q ξ=ηQ

1.3 正交矩阵及其性质定理

定义

实 数 域 R 上 的 n 阶 矩 阵 Q 满 足 Q T Q = E , 则 称 Q 为 正 交 矩 阵 实数域R上的n阶矩阵Q满足Q^TQ=E,则称Q为正交矩阵 RnQQTQ=EQ

性质

  1. n阶矩阵Q为正交矩阵    ⟺    Q − 1 = Q T \iff Q^{-1}=Q^T Q1=QT
  2. Q Q Q为正交矩阵,则 Q − 1 Q^{-1} Q1也是正交矩阵
  3. 若P,Q都是n阶正交矩阵,则PQ也是n阶正交矩阵
  4. Q为正交矩阵,则 ∣ Q ∣ = ± 1 |Q|=\pm1 Q=±1

定理

设 Q n = ( α 1 α 2 … α n ) = ( β 1 T β 2 T ⋮ β n T ) , 则 Q n 为 正 交 矩 阵 设Q_n=(\alpha_1\alpha_2\dots\alpha_n)=\begin{pmatrix}\beta_1^T\\\beta_2^T\\\vdots\\\beta_n^T\end{pmatrix},则Q_n为正交矩阵 Qn=(α1α2αn)=β1Tβ2TβnTQn

   ⟺    列 向 量 组 α 1 , α 2 , . . . , α n 为 R n 的 一 组 标 准 正 交 基 \iff 列向量组\alpha_1,\alpha_2,...,\alpha_n为R^n的一组标准正交基 α1,α2,...,αnRn

   ⟺    行 向 量 组 β 1 T , β 2 T , . . . , β n T 为 R n 的 一 组 标 准 正 交 基 \iff 行向量组\beta_1^T,\beta_2^T,...,\beta_n^T为R^n的一组标准正交基 β1T,β2T,...,βnTRn

小结:

( η 1 η 2 … η n ) = ( ξ 1 ξ 2 … ξ n ) Q (\eta_1\eta_2\dots\eta_n)=(\xi_1\xi_2\dots\xi_n)Q (η1η2ηn)=(ξ1ξ2ξn)Q

  • ξ \xi ξ η \eta η均为标准正交基,则过渡矩阵Q是正交矩阵
  • ξ \xi ξ是标准正交基,Q是正交矩阵,则 η \eta η是标准正交基
  • η \eta η是标准正交基,Q是正交矩阵,则 ξ \xi ξ是标准正交基

https://wenku.baidu.com/view/e6d6a3b00975f46527d3e1a5.html

二、行列式

2.1 定义

为了给出n阶行列式的定义,首先我们研究三阶行列式的结构:
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31 \begin{vmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{vmatrix}=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{13}a_{22}a_{31} a11a21a31a12a22a32a13a23a33=a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a22a31

2.1.1 结构一
  1. 行列式右边任一项除正负号外可以写成:
    a 1 p 1 a 2 p 2 a 3 p 3 a_{1p_1}a_{2p_2}a_{3p_3} a1p1a2p2a3p3
    其中 p 1 p 2 p 3 p_1p_2p_3 p1p2p3是123的某个排列
  2. 各项所带的正负号可以表示为 ( − 1 ) t (-1)^t (1)t,其中t由列指标排列 p 1 p 2 p 3 p_1p_2p_3 p1p2p3所决定(称为 p 1 p 2 p 3 p_1p_2p_3 p1p2p3的逆序数)
    三阶行列式可以写成:
    ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = ∑ ( − 1 ) t a 1 p 1 a 2 p 2 a 3 p 3 \begin{vmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{vmatrix}=\sum(-1)^ta_{1p_1}a_{2p_2}a_{3p_3} a11a21a31a12a22a32a13a23a33=(1)ta1p1a2p2a3p3
2.1.2 由结构一得到n阶行列式的传统定义

由 n 2 个 数 a i j ( i , j = 1 , 2 , . . . , n ) 构 成 的 代 数 和 由n^2个数a_{ij}(i,j=1,2,...,n)构成的代数和 n2aij(i,j=1,2,...,n)

∑ ( − 1 ) t a 1 p 1 a 2 p 2 a 3 p 3 \sum(-1)^ta_{1p_1}a_{2p_2}a_{3p_3} (1)ta1p1a2p2a3p3

称 为 n 阶 行 列 式 , 记 为 : 称为n阶行列式,记为: n

∣ a 11 a 12 … a 1 n a 12 a 22 … a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 … a n n ∣ \begin{vmatrix}a_{11}&a_{12}&\dots&a_{1n}\\a_{12}&a_{22}&\dots&a_{2n}\\\vdots&\vdots&\ddots&\vdots\\a_{n1}&a_{n2}&\dots&a_{nn}\end{vmatrix} a11a12an1a12a22an2a1na2nann

简 记 为 d e t ( a i j ) , 其 中 p 1 p 2 … p n 为 自 然 数 1 , 2 , . . . , n 的 一 个 排 雷 , t 为 这 个 排 列 的 逆 序 数 , ∑ 表 示 对 所 有 排 列 求 和 简记为det(a_{ij}),其中p_1p_2\dots p_n为自然数1,2,...,n的一个排雷,t为这个排列的逆序数,\sum表示对所有排列求和 det(aij)p1p2pn1,2,...,nt

在 n 阶 行 列 式 D 中 , 数 a i j 为 行 列 式 D 的 ( i , j ) 元 在n阶行列式D中,数a_{ij}为行列式D的(i,j)元 nDaijD(i,j)

特 别 规 定 一 阶 行 列 式 ∣ ( a ) ∣ 的 值 就 是 a 特别规定一阶行列式|(a)|的值就是a (a)a

2.1.3 结构二

为了给出n阶行列式的第二种定义方式,我们再进一步研究三阶行列式的结构:

∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31 \begin{vmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{vmatrix}=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{13}a_{22}a_{31} a11a21a31a12a22a32a13a23a33=a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a22a31
= a 11 ( a 22 a 33 − a 23 a 32 ) − a 12 ( a 21 a 33 − a 23 a 31 ) + a 13 ( a 21 a 32 − a 22 a 31 ) \quad\quad\quad\quad\quad\quad\quad=a_{11}(a_{22}a_{33}-a_{23}a_{32})-a_{12}(a_{21}a_{33}-a_{23}a_{31})+a_{13}(a_{21}a_{32}-a_{22}a_{31}) =a11(a22a33a23a32)a12(a21a33a23a31)+a13(a21a32a22a31)
= a 11 ∣ a 22 a 23 a 32 a 33 ∣ − a 12 ∣ a 21 a 23 a 31 a 33 ∣ + a 13 ∣ a 21 a 22 a 31 a 32 ∣ \quad\quad\quad\quad\quad\quad\quad=a_{11}\begin{vmatrix}a_{22}&a_{23}\\a_{32}&a_{33}\end{vmatrix}-a_{12}\begin{vmatrix}a_{21}&a_{23}\\a_{31}&a_{33}\end{vmatrix}+a_{13}\begin{vmatrix}a_{21}&a_{22}\\a_{31}&a_{32}\end{vmatrix} =a11a22a32a23a33a12a21a31a23a33+a13a21a31a22a32

由以上推导,我们可以得到n阶行列式的递归法定义:
由 n 2 个 数 a i j ( i , j = 1 , 2 , . . . , n ) 组 成 的 n 阶 行 列 式 : 由n^2个数a_{ij}(i,j=1,2,...,n)组成的n阶行列式: n2aij(i,j=1,2,...,n)n

∣ a 11 a 12 … a 1 n a 12 a 22 … a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 … a n n ∣ \begin{vmatrix}a_{11}&a_{12}&\dots&a_{1n}\\a_{12}&a_{22}&\dots&a_{2n}\\\vdots&\vdots&\ddots&\vdots\\a_{n1}&a_{n2}&\dots&a_{nn}\end{vmatrix} a11a12an1a12a22an2a1na2nann

是 这 样 一 个 算 式 : 是这样一个算式:

当 n = 1 时 , 定 义 D = ∣ ( a 11 ) ∣ = a 11 ; 当n=1时,定义D=|(a_{11})|=a_{11}; n=1D=(a11)=a11;
当 n ≥ 2 时 , 定 义 D = a 11 A 11 + a 12 A 12 + ⋯ + a 1 n a 1 n 当n\ge2时,定义D=a_{11}A_{11}+a_{12}A_{12}+\dots+a_{1n}a_{1n} n2D=a11A11+a12A12++a1na1n
其 中 A i j = ( − 1 ) i + j M i j , M i j 是 D 去 掉 第 i 行 第 j 列 全 部 元 素 后 , 按 原 顺 序 排 成 的 n − 1 阶 行 列 式 其中A_{ij}=(-1)^{i+j}M_{ij},M_{ij}是D去掉第i行第j列全部元素后,按原顺序排成的n-1阶行列式 Aij=(1)i+jMijMijDijn1
M i j 为 元 素 a i j 的 余 子 式 , A i j 是 元 素 a i j 的 代 数 余 子 式 M_{ij}为元素a_{ij}的余子式,A_{ij}是元素a_{ij}的代数余子式 MijaijAijaij

注:
只有方阵才有行列式!

2.2 性质
2.2.1 性质1

设 A 为 方 阵 , 则 ∣ A T ∣ = ∣ A ∣ , 即 转 置 不 改 变 方 阵 的 行 列 式 设A为方阵,则|A^T|=|A|,即转置不改变方阵的行列式 AAT=A
由此性质可知,行列式中的行与列具有同等的地位,行列式的性质凡是对行成立的对列也同样成立,反之亦然。

2.2.2 性质2

行列式等于它的任一行元素与其对应的代数余子式乘积的和,即:
D = a 11 A i 1 + a 12 A i 2 + ⋯ + a i n A i n ( i = 1 , 2 , … , n ) D=a_{11}A_{i1}+a_{12}A_{i2}+\dots+a_{in}A_{in}\quad(i=1,2,\dots,n) D=a11Ai1+a12Ai2++ainAin(i=1,2,,n)

推论:
行列式等于它的任一列各元素与其对应的代数余子式乘积的和,即:
D = a 1 j A 1 j + a 2 j A 2 j + ⋯ + a n j A n j ( j = 1 , 2 , . . . , n ) D=a_{1j}A_{1j}+a_{2j}A_{2j}+\dots+a_{nj}A_{nj}\quad(j=1,2,...,n) D=a1jA1j+a2jA2j++anjAnj(j=1,2,...,n)

2.2.3 性质3(线性性质)
  1. 行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式
  2. ∣ a 11 a 12 … a 1 n ⋮ ⋮ ⋱ ⋮ a i 1 + b i 1 a i 2 + b i 2 … a i n + b i n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 … a n n ∣ = ∣ a 11 a 12 … a 1 n ⋮ ⋮ ⋱ ⋮ a i 1 a i 2 … a i n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 … a n n ∣ + ∣ a 11 a 12 … a 1 n ⋮ ⋮ ⋱ ⋮ b i 1 b i 2 … b i n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 … a n n ∣ \begin{vmatrix}a_{11}&a_{12}&\dots&a_{1n}\\\vdots&\vdots&\ddots&\vdots\\a_{i1}+b_{i1}&a_{i2}+b_{i2}&\dots&a_{in}+b{in}\\\vdots&\vdots&\ddots&\vdots\\a_{n1}&a_{n2}&\dots&a_{nn}\end{vmatrix}=\begin{vmatrix}a_{11}&a_{12}&\dots&a_{1n}\\\vdots&\vdots&\ddots&\vdots\\a_{i1}&a_{i2}&\dots&a_{in}\\\vdots&\vdots&\ddots&\vdots\\a_{n1}&a_{n2}&\dots&a_{nn}\end{vmatrix}+\begin{vmatrix}a_{11}&a_{12}&\dots&a_{1n}\\\vdots&\vdots&\ddots&\vdots\\b_{i1}&b_{i2}&\dots&b{in}\\\vdots&\vdots&\ddots&\vdots\\a_{n1}&a_{n2}&\dots&a_{nn}\end{vmatrix} a11ai1+bi1an1a12ai2+bi2an2a1nain+binann=a11ai1an1a12ai2an2a1nainann+a11bi1an1a12bi2an2a1nbinann

推论:

  1. 行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面
  2. 某一行(列)的所有元素全为0的行列式其值为0

注意:
矩阵的数乘是指用常数乘以矩阵的每一个元素,假如存在一个n=k的行列式,那么以下等式成立:
∣ λ A ∣ = λ k ∣ A ∣ |\lambda A|=\lambda^k|A| λA=λkA

2.2.4 性质4

行列式中如果有两行(列)完全相等,则行列式等于0

推论:
行列式中如果有两行(列)元素成比例,则行列式等于0

2.2.5 性质5

把行列式的某一行(列)的各元素乘以同一个数然后加到另一行(列)对应的元素上去,行列式不变。

2.2.6 性质6

行列式的两行(列)对换,行列式的值反号

证明:
0 = ∣ a 1 , . . . , a i + a j , . . . , a i + a j , . . . , a n ∣ 0=|a_{1},...,a_{i}+a{j},...,a_i+a_j,...,a_n| 0=a1,...,ai+aj,...,ai+aj,...,an
= ∣ a 1 , . . . , a i , . . . , a i + a j , . . . , a n ∣ + ∣ a 1 , . . . , a j , . . . , a i + a j , . . . , a n ∣ \quad=|a_1,...,a_i,...,a_i+a_j,...,a_n|+|a_1,...,a_j,...,a_i+a_j,...,a_n| =a1,...,ai,...,ai+aj,...,an+a1,...,aj,...,ai+aj,...,an
= ∣ a 1 , . . . , a i , . . . , a j , . . . , a n ∣ + ∣ a 1 , . . . , a j , . . . , a i , . . . , a n ∣ \quad=|a_1,...,a_i,...,a_j,...,a_n|+|a_1,...,a_j,...,a_i,...,a_n| =a1,...,ai,...,aj,...,an+a1,...,aj,...,ai,...,an
即: ∣ a 1 , . . . , a i , . . . , a j , . . . , a n ∣ = − ∣ a 1 , . . . , a j , . . . , a i , . . . , a n ∣ |a_1,...,a_i,...,a_j,...,a_n|=-|a_1,...,a_j,...,a_i,...,a_n| a1,...,ai,...,aj,...,an=a1,...,aj,...,ai,...,an

初等变换与行列式:

  1. 将某一行的倍数加到另外一行:行列式不变
  2. 两行互换:行列式 × ( − 1 ) \times(-1) ×(1)
  3. 将某一行 × c \times c ×c:行列式 × c \times c ×c

注意进行列变换可以得到相同的结论

2.2.7 性质7

由以上初等变化的性质与行列式的关系可知:
矩阵行列式的乘积等于矩阵乘积的行列式。

证明:
所有行列式非0的行列式都可以化为单位矩阵和一系列初等矩阵的乘积,单位矩阵的乘积行列式等于1,初等矩阵和矩阵乘积的行列式就等于初等矩阵和矩阵行列式的乘积,可以得到证明。

https://wenku.baidu.com/view/e333c62a69dc5022abea0066.html

2.2.8 性质8

在这里插入图片描述

2.3 几个等价结论

∣ A ∣ ≠ 0 |A|\ne0 A=0
   ⟺    A 可 逆 \iff A可逆 A
   ⟺    R ( A ) = n \iff R(A)=n R(A)=n
   ⟺    A 的 列 ( 行 ) 向 量 组 线 性 无 关 \iff A的列(行)向量组线性无关 A线
   ⟺    A X = 0 仅 有 零 解 \iff AX=0仅有零解 AX=0
   ⟺    A X = b 有 唯 一 解 \iff AX=b有唯一解 AX=b
   ⟺    任 一 n 维 向 量 都 可 由 A 的 列 向 量 组 唯 一 线 性 表 示 \iff 任一n维向量都可由A的列向量组唯一线性表示 nA线
   ⟺    A 课 表 示 成 初 等 矩 阵 的 乘 积 \iff A课表示成初等矩阵的乘积 A
   ⟺    A 的 定 价 标 准 形 式 单 位 矩 阵 \iff A的定价标准形式单位矩阵 A
   ⟺    A 的 行 最 简 形 是 单 位 矩 阵 \iff A的行最简形是单位矩阵 A
   ⟺    A 的 特 征 值 都 不 等 于 0 \iff A的特征值都不等于0 A0
   ⟺    A T A 是 正 定 矩 阵 \iff A^TA是正定矩阵 ATA

2.4 行列式的几何本质

行列式是线性变换的伸缩因子

以下从线性变换出发取理解行列式

2.4.1 线性变换的几何性质

线性变换的几何性质有以下三点:

  • 变换前是直线的,变换后依然是直线
  • 直线比例保持不变
  • 变换前是原点的,变换后依然是原点

旋转:
在这里插入图片描述
在这里插入图片描述
推移:
在这里插入图片描述
在这里插入图片描述
这两个的叠加:
在这里插入图片描述

2.4.2 实现线性变换的矩阵

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
矩阵变换的根本是变换基
以旋转为例:
在这里插入图片描述
我们只需要旋转基,就可以完成正方形的旋转:
在这里插入图片描述

在这里插入图片描述

以下是一个矩阵旋转时基是怎样变化的:
在这里插入图片描述
在这里插入图片描述
再给一个例子,看下推移是怎么改变基的:
在这里插入图片描述

2.4.3 由上面推导到行列式
  1. 行列式是线性变换的伸缩因子
    在这里插入图片描述
    图片说明:
    在这里插入图片描述
    在这里插入图片描述
    矩阵行列式由正到负,线性变换的变化:
    在这里插入图片描述
    在这里插入图片描述
  2. 行列式>0时:

如果行列式大于1,很显然对于图形有放大的作用
行列式等于1,图形的大小不会变换
行列式大于0小于1,对于图形有缩小的作用

  1. 行列式=0

行列式=0,有一个很重要的结论是,矩阵不可逆,以下是关于不可逆的几何解释:
假设存在一个矩形,原始的图像是这样:
在这里插入图片描述
通过如下的矩阵,逆时针旋转45°:
在这里插入图片描述
此时可通过另外一个矩阵,顺时针旋转45°:
在这里插入图片描述
此时这个正方形看起来就像没有变化,称:
在这里插入图片描述
在这里插入图片描述
两个矩阵互为逆矩阵

有的线性变换是可逆的,有的不行,比如如果矩阵的行列式为0,这时候变换后的正方形就会缩成一个点:
在这里插入图片描述
或者缩成一条直线:
在这里插入图片描述
没有矩阵可以将点或者直线恢复成矩阵。

  1. 行列式<0

原始图像如下:
在这里插入图片描述
被行列式<0的矩阵线性变换后变为如下形式:
在这里插入图片描述

行列式小于零,其实就是改变了基的“左右手法则”。

2.4.4 推论

知道了行列式的意义,我们就很容易知道:
在这里插入图片描述
同时我们也很容易知道:
在这里插入图片描述
因为:
在这里插入图片描述

三阶行列式是列组成的平行六面体的体积

https://www.zhihu.com/question/36966326

三、子式与代数余子式

3.1 定义
3.1.1 定义1

在一个n阶行列式D中任取k行k列,则位于这些行列的相交处的元素构成的k阶行列式被称为行列式D的一个k阶子式
在这里插入图片描述

3.1.2 定义2

n > 1 阶 行 列 式 D = ∣ a 11 … a 1 j … a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ a i 1 … a i j … a i n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 … a n j … a n n ∣ 的 某 一 元 素 a i j 的 余 子 式 M i j 是 指 D 中 划 去 a i j 所 在 行 与 列 后 剩 下 的 n − 1 阶 子 式 n>1阶行列式D=\begin{vmatrix}a_{11}&\dots&a_{1j}&\dots&a_{1n}\\\vdots&\vdots&\vdots&\vdots&\vdots\\a_{i1}&\dots&a_{ij}&\dots&a_{in}\\\vdots&\vdots&\vdots&\vdots&\vdots\\a_{n1}&\dots&a_{nj}&\dots&a_{nn}\end{vmatrix}的某一元素a_{ij}的余子式M_{ij}是指D中划去a_{ij}所在行与列后剩下的n-1阶子式 n>1D=a11ai1an1a1jaijanja1nainannaijMijDaijn1

3.1.3 定义3

n 阶 行 列 式 D 的 元 素 a i j 的 余 子 式 M i j 附 上 符 号 ( − 1 ) i + j 后 , 被 称 为 元 素 a i j 的 代 数 余 子 式 n阶行列式D的元素a_{ij}的余子式M_{ij}附上符号(-1)^{i+j}后,被称为元素a_{ij}的代数余子式 nDaijMij(1)i+jaij
元 素 a i j 的 代 数 余 子 式 用 符 号 A i j 表 示 为 : 元素a_{ij}的代数余子式用符号A_{ij}表示为: aijAij
A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij

3.2 定理
3.2.1 定理1

行 列 式 D 等 于 它 任 一 行 ( 列 ) 的 所 有 元 素 与 它 们 对 应 的 代 数 余 子 式 的 乘 积 之 和 , 也 就 是 说 : 行列式D等于它任一行(列)的所有元素与它们对应的代数余子式的乘积之和,也就是说: D
D = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n D=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in} D=ai1Ai1+ai2Ai2+...+ainAin
D = a 1 j A 1 j + a 2 j A 2 j + . . . + a n j A n j D=a_{1j}A_{1j}+a_{2j}A_{2j}+...+a_{nj}A_{nj} D=a1jA1j+a2jA2j+...+anjAnj

3.2.2 定理2

在这里插入图片描述
https://wenku.baidu.com/view/e191149b48649b6648d7c1c708a1284ac850050e.html?fr=search

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值