数学/线性代数 {子式,余子式,代数余子式,拉普拉斯展开}

数学/线性代数 {子式,余子式,代数余子式,拉普拉斯展开/行列式按{行/列}展开}
@LOC= 2

子式

定义

给定行列式A, 从中任意的选择k行和k列, 这些行列的交点, 组成新的 k ∗ k k*k kk的行列式B, 称B为A的一个k阶子式;

比如 ∣ b c h i ∣ \begin{vmatrix} b & c \\ h & i\end{vmatrix} bhci ∣ a b c d e f g h i ∣ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i\end{vmatrix} adgbehcfi 的一个子式 (选择 1 , 3 1,3 1,3行, 和 2 , 3 2,3 2,3列);

性质

MAKR: @LOC_1;

如果N阶行列式 ∣ A ∣ ≠ 0 |A| \neq 0 A=0, 则对于 ∀ r ∈ [ 1 , N ] , ∃ r阶子式 ≠ 0 \forall r \in [1, N], \exist \text{r阶子式} \neq 0 r[1,N],r阶子式=0;

这可以通过拉普拉斯展开来证明, 对于 r = N r=N r=N显然成立, 对于将 r = N − 1 r=N-1 r=N1 ∣ A ∣ |A| A按行展开 则一定存在一个 r r r阶子式 ≠ 0 \neq 0 =0, 再将他继续展开 得到 r = N − 2 r=N-2 r=N2

注意, 是 ∃ r 阶子式 ≠ 0 \exist r阶子式 \neq 0 r阶子式=0, 不是 ∀ \forall , 会存在子式为0的情况; 总之要从拉普拉斯展开为基础, 因此更准确的说, 对于任意一{行/列}所对应的N个子式中 一定包含至少1个非零子式;

余子式

定义

给定 M ∗ N M*N MN的行列式A, 从中选择k行和k列, 将这些行和列全部去除, 剩余的 ( M − k ) ∗ ( N − k ) (M-k) * (N-k) (Mk)(Nk)的行列式B, 称B为A的一个余子式;

所谓, 即余下的 剩余的;

比如 ∣ a c d f ∣ \begin{vmatrix} a & c \\ d & f \end{vmatrix} adcf ∣ a b c C d e f F g h i I A B C X ∣ \begin{vmatrix} a & b & c & C \\ d & e & f & F \\ g & h & i & I \\ A & B & C & X\end{vmatrix} adgAbehBcfiCCFIX 的一个余子式 (选择 3 , 4 3,4 3,4行, 和 2 , 4 2,4 2,4列);

相关术语

( x , y ) (x,y) (x,y)的余子式;

k = 1 k=1 k=1时, 仅去除1行1列, 此时 ( x , y ) (x,y) (x,y)的余子式 表示: 去除掉第 x x x行 和 第 y y y

代数余子式

定义

给定一个 ( x , y ) (x,y) (x,y)的余子式M (M表示remain剩余), (令 F = ( − 1 ) x + y F = (-1)^{x +y} F=(1)x+y, 其只是一个符号), 则行列式 F ∗ M F * M FM称为 M M M的代数余子式;

比如, 给定 ( 2 , 3 ) (2, 3) (2,3)的余子式为 ∣ a b c d ∣ \begin{vmatrix} a & b \\ c & d\end{vmatrix} acbd , 其对应的代数余子式为 − ∣ a b c d ∣ - \begin{vmatrix} a & b \\ c & d\end{vmatrix} acbd (因为 ( − 1 ) 2 + 3 = − 1 (-1)^{2+3} = -1 (1)2+3=1)
. 如果将 ( 2 , 3 ) (2,3) (2,3) 改为 ( 2 , 2 ) (2,2) (2,2), 那么 其对应的代数余子式 和 其本身行列式, 相同;

拉普拉斯展开

定义

又称: 行列式按{行/列}展开;

任意行列式的值, 等于 任一{行/列}的各元素 与 其对应的代数余子式的乘积 之和;

A l g e ( i , j ) Alge(i,j) Alge(i,j) ( i , j ) (i,j) (i,j)的代数余子式;
. 对任意行列式 D D D, 取 R k R_k Rk行, 则行列式的值为 ∑ i = 1 N R k , i ∗ A l g e ( k , i ) \sum_{i = 1}^{N} R_{k,i} * Alge(k,i) i=1NRk,iAlge(k,i);
. . 若取 C k C_k Ck列, 则行列式的值为 ∑ i = 1 N R i , k ∗ A l g e ( i , k ) \sum_{i = 1}^{N} R_{i,k} * Alge(i,k) i=1NRi,kAlge(i,k);

证明

∣ . . . D r , 1 D r , 2 . . . D r , N . . . ∣ \begin{vmatrix} ... \\ D_{r,1} & D_{r,2} & ... & D_{r,N} \\ ...\end{vmatrix} ...Dr,1...Dr,2...Dr,N
= ∣ . . . D r , 1 + 0 + . . . + 0 0 + D r , 2 + 0 + . . . + 0 . . . 0 + . . . + 0 + D r , N . . . ∣ = \begin{vmatrix} ... \\ D_{r,1} + 0 + ... + 0& 0 + D_{r,2} + 0 + ... + 0 & ... & 0 + ... + 0 + D_{r,N} \\ ...\end{vmatrix} = ...Dr,1+0+...+0...0+Dr,2+0+...+0...0+...+0+Dr,N

= ∣ . . . D r , 1 0 . . . 0 . . . ∣ + ∣ . . . 0 D r , 2 . . . 0 . . . ∣ + . . . + ∣ . . . 0 0 . . . D r , N . . . ∣ = \begin{vmatrix} ... \\ D_{r,1} & 0 & ... & 0 \\ ...\end{vmatrix} + \begin{vmatrix} ... \\ 0 & D_{r,2} & ... & 0 \\ ...\end{vmatrix} + ... + \begin{vmatrix} ... \\ 0 & 0 & ... & D_{r,N} \\ ...\end{vmatrix} = ...Dr,1...0...0 + ...0...Dr,2...0 +...+ ...0...0...Dr,N ;

证明: 对于一个形如 ∣ . . . 0 . . . 0 D i , j 0 . . . 0 . . . ∣ \begin{vmatrix} ... \\ 0 & ... & 0 & D_{i,j} & 0 & ... & 0 \\ ...\end{vmatrix} ...0......0Di,j0...0 的行列式 D D D, 其值为 D i , j ∗ A l g e ( i , j ) D_{i,j} * Alge(i,j) Di,jAlge(i,j);
. 通过 i i i次行交换 j j j次列交换, 将其变为 ∣ D i , j 0 . . . 0 x ∣ R D ∣ ∣ \begin{vmatrix} D_{i,j} & 0 & ... & 0 \\ x & |RD|\end{vmatrix} Di,jx0RD...0 的形式 D D DD DD (其中, ∣ R D ∣ |RD| RD表示除了{第1行,第1列}外的所有元素);
. 根据CSDN- 130092391/ @Mark_3, 该 D D DD DD行列式为特殊下三角形行列式, 因此 D D = D i , j ∗ ∣ R D ∣ DD = D_{i,j} * |RD| DD=Di,jRD;
. ∣ R D ∣ |RD| RD其实是 D D D ( i , j ) (i,j) (i,j)的余子式; (因为我们是用 i i i次行交换, 目的就是保持其他元素的相对位置)
. 注意, 虽然你用1次行交换 1次列交换, 也可以将 D i , j D_{i,j} Di,j移动到左上角, 但是, 此时你得到的 ∣ R D ∣ |RD| RD 就不是 原行列式 D D D ( i , j ) (i,j) (i,j)的余子式;
. D D = D i , j ∗ R e m a i n ( i , j ) DD = D_{i,j} * Remain(i,j) DD=Di,jRemain(i,j), 其中 R e m a i n ( i , j ) Remain(i,j) Remain(i,j)表示行列式 D D D ( i , j ) (i,j) (i,j)的余子式;
. 但是, 注意 D D ≠ D DD \neq D DD=D, 因为我们执行了 i + j i + j i+j次{行,列}交换, 因此, D = D D ∗ ( − 1 ) i + j D = DD * (-1)^{i+j} D=DD(1)i+j;
. ( − 1 ) i + j (-1)^{i+j} (1)i+j R e m a i n ( i , j ) Remain(i,j) Remain(i,j)合并, 得到 A l g e ( i , j ) Alge(i,j) Alge(i,j), 故 D = D i , j ∗ A l g e ( i , j ) D = D_{i,j} * Alge(i,j) D=Di,jAlge(i,j);

因此, 原行列式为 ∑ i = 1 N D r , i ∗ A l g e ( r , i ) \sum_{i = 1}^{N} D_{r,i} * Alge(r,i) i=1NDr,iAlge(r,i);

性质

@Delimiter

MARK: @LOC_0

某一行的各元素 与 另一行对应列的代数余子式的乘积, 之和, 为 0 0 0; (行也可以改为列, 行列式中 {行,列}是同等地位)
. 公式表述: ∀ r a ≠ r b , ∑ i = 1 N D r a , i ∗ A l g e ( r b , i ) = 0 \forall r_a \neq r_b, \sum_{i = 1}^{N} D_{r_a,i} * Alge(r_b,i) = 0 ra=rb,i=1NDra,iAlge(rb,i)=0;

我们知道, 当 r a = r b r_a = r_b ra=rb, 这就是拉普拉斯展开, 该式子的值 就为该行列式的值;
而这里 r a ≠ r b r_a \neq r_b ra=rb;

证明

令行列式 D 1 = D D1 = D D1=D, 执行操作 ∀ i ∈ [ 1 , n ] D 1 r b , i = D 1 r a , i \forall i \in [1, n] \quad D1_{r_b,i} = D1_{r_a,i} i[1,n]D1rb,i=D1ra,i; (即, 此时 D 1 D1 D1有两个行 是完全相等的, 即 D 1 = 0 D1 = 0 D1=0) (注意, D 1 r a , i = D r a , i D1_{r_a,i} = D_{r_a,i} D1ra,i=Dra,i)

对D1的 r b r_b rb行, 进行拉普拉斯展开, 得到: ∑ i = 1 N D 1 r b , i ∗ A l g e ( r b , i ) \sum_{i = 1}^{N} D1_{r_b,i} * Alge(r_b,i) i=1ND1rb,iAlge(rb,i); 该式子等于 0 0 0 (因为该D1行列式为0)
. 因为 D 1 r b , i = D r a , i D1_{r_b, i} = D_{r_a,i} D1rb,i=Dra,i, 故该式子等价于: ∑ i = 1 N D r a , i ∗ A l g e ( r b , i ) \sum_{i = 1}^{N} D_{r_a,i} * Alge(r_b,i) i=1NDra,iAlge(rb,i);

@Delimiter

应用

范德蒙德行列式求解: 130092391/ @Mark_4;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值