数学 {上界/下界}

数学 {上界/下界}
@LOC: 0

上界/下界 Upper and lower bounds

定义

S为一个集合, R为S集合元素的预序关系, 令 S S ⊂ S SS \subset S SSS;
上界Upper bound: ∀ t ∈ S , ( ∀ x ∈ S S , R ( x , t ) )    ⟹    ( t 为上界 ) \forall t \in S, (\forall x \in SS, R(x,t)) \implies (t 为上界) tS,(xSS,R(x,t))(t为上界);
下界Lower bound: ∀ t ∈ S , ( ∀ x ∈ S S , R ( t , x ) )    ⟹    ( t 为下界 ) \forall t \in S, (\forall x \in SS, R(t,x)) \implies (t 为下界) tS,(xSS,R(t,x))(t为下界);

性质

对于实数集上的二元关系 ≤ \leq : 任意开区间与闭区间的 上下界, 是一样的;

( 1 , 2 ) (1,2) (1,2)的上下界为 ( − ∞ , 1 ] , [ 2 , + ∞ ) (-\infty, 1], [2, +\infty) (,1],[2,+), 而 [ 1 , 2 ] [1, 2] [1,2]的上下界 也是 ( − ∞ , 1 ] , [ 2 , + ∞ ) (-\infty, 1], [2, +\infty) (,1],[2,+);

@DELI;

上界: 要么不存在, 要么 ≥ 1 \geq 1 1个;
因此, 上下界 都用集合来表示;

@DELI;

以常见的实数集为例, 二元关系是 ≤ \leq (注意不可以是 < < <, 因为他不满足自反性);
上界表明: 所有 ≥ S S \geq SS SS的元素; 小于表明: 所有 ≤ S S \leq SS SS的元素;

@DELI;

如果SS存在最大值, 则该最大值一定也是上界;

例题

S = R S = \mathbb R S=R, 二元关系为 ≤ \leq (不可以是 < < < 因为他不满足自反性);
SS = [1,2), 则上界为 [ 2 , + ∞ ) [2, + \infty) [2,+), 下界为 ( − ∞ , 1 ] (-\infty, 1] (,1];
. 注意, 下界不是 ( − ∞ , 1 ) (-\infty, 1) (,1), 要包含 1 1 1的, 因为1是最小值;

@DELI;

S = R S = \mathbb R S=R, 二元关系为 ≤ \leq , S S = [ 3 , + ∞ ) SS = [3, +\infty) SS=[3,+), 则SS不存在上界;

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值