数学 {间断点}
间断点
定义
如果在
x
0
x_0
x0处 不连续, 则称: 该点为间断点;
也就是, 当
f
(
x
0
−
)
=
f
(
x
0
+
)
=
f
(
x
0
)
f(x_0^-) = f(x_0^+) = f(x_0)
f(x0−)=f(x0+)=f(x0)不满足时 为间断点;
间断点分为: {第一类, 第二类}间断点;
@DELI;
#第一类间断点#;
分为:
1: 可去间断点; 如果
x
0
x_0
x0的*{左,右}极限 都存在且相等*, 但是
≠
f
(
x
0
)
\neq f(x_0)
=f(x0);
.
≠
f
(
x
0
)
\neq f(x_0)
=f(x0)这句话 其实有2种情况: {1:
x
0
x_0
x0处没有定义}{2:
x
0
x_0
x0处有定义};
2: 跳跃间断点; 如果
x
0
x_0
x0的*{左,右}极限 都存在*, 但是不相等;
@DELI;
#第二类间断点# (不是第一类间断点, 就是第二类);
此时
x
0
x_0
x0的{左,右}极限中 至少有1个是不存在的 (令这个不存在的极限为
L
L
L), 而极限不存在 分为2种 (震荡 和 无穷):
1:
震荡间断点; (
L
≠
∞
L \neq \infty
L=∞ 而是震荡,比如
s
i
n
(
1
x
)
sin(\frac{1}{x})
sin(x1)在
0
0
0处就是震荡间断点 其极限是在
[
−
1
,
1
]
[-1,1]
[−1,1]中震荡);
2:
无穷间断点; (
L
=
∞
L = \infty
L=∞, 比如
1
x
\frac{1}{x}
x1在
0
0
0处就是无穷间断点 其极限是
∞
\infty
∞);
错误
注意,
x
1
/
3
x^{1/3}
x1/3这个函数 在
0
0
0处 不是间断点, 也就是
f
(
0
−
)
=
f
(
0
+
)
=
f
(
0
)
=
0
f(0^-) = f(0^+) = f(0) = 0
f(0−)=f(0+)=f(0)=0;
.
只不过说, 他的导函数
f
′
(
0
−
)
=
f
′
(
0
+
)
=
∞
f'(0-) = f'(0+) = \infty
f′(0−)=f′(0+)=∞ (即
0
0
0确实是他的导函数的间断点);