数学 {间断点}

数学 {间断点}

间断点

定义

如果在 x 0 x_0 x0不连续, 则称: 该点为间断点;
也就是, 当 f ( x 0 − ) = f ( x 0 + ) = f ( x 0 ) f(x_0^-) = f(x_0^+) = f(x_0) f(x0)=f(x0+)=f(x0)不满足时 为间断点;

间断点分为: {第一类, 第二类}间断点;

@DELI;

#第一类间断点#;

分为:
1: 可去间断点; 如果 x 0 x_0 x0的*{左,右}极限 都存在且相等*, 但是 ≠ f ( x 0 ) \neq f(x_0) =f(x0);
. ≠ f ( x 0 ) \neq f(x_0) =f(x0)这句话 其实有2种情况: {1: x 0 x_0 x0处没有定义}{2: x 0 x_0 x0处有定义};
2: 跳跃间断点; 如果 x 0 x_0 x0的*{左,右}极限 都存在*, 但是不相等;

@DELI;

#第二类间断点# (不是第一类间断点, 就是第二类);

此时 x 0 x_0 x0的{左,右}极限中 至少有1个是不存在的 (令这个不存在的极限为 L L L), 而极限不存在 分为2种 (震荡 和 无穷):
1: 震荡间断点; ( L ≠ ∞ L \neq \infty L= 而是震荡,比如 s i n ( 1 x ) sin(\frac{1}{x}) sin(x1) 0 0 0处就是震荡间断点 其极限是在 [ − 1 , 1 ] [-1,1] [1,1]中震荡);
2: 无穷间断点; ( L = ∞ L = \infty L=, 比如 1 x \frac{1}{x} x1 0 0 0处就是无穷间断点 其极限是 ∞ \infty );

错误

注意, x 1 / 3 x^{1/3} x1/3这个函数 在 0 0 0处 不是间断点, 也就是 f ( 0 − ) = f ( 0 + ) = f ( 0 ) = 0 f(0^-) = f(0^+) = f(0) = 0 f(0)=f(0+)=f(0)=0;
. 只不过说, 他的导函数 f ′ ( 0 − ) = f ′ ( 0 + ) = ∞ f'(0-) = f'(0+) = \infty f(0)=f(0+)= (即 0 0 0确实是他的导函数的间断点);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值