数学 {有限/无限集合,可数/不可数集合}
@LOC: 1
有限集合 Finite set
定义
S为一集合
条件:
∣
S
∣
<
ℵ
0
|S| < \aleph_0
∣S∣<ℵ0;
结论: S为有限集合;
无限集合 Infinite set
定义
S为一集合
条件: S不是有限集合;
结论: S为无限集合;
性质
#大多时候 你只去区分(有限 和 无限)即可, 不用关注是可数/不可数#
比如对于自然数集 虽然他是无限的 你里面元素的长度是趋于无限长度的, 但对于
x
∈
N
x \in \mathbb N
x∈N这句话 此时只要你得到了一个具体的元素
x
x
x 他是一个确定的数(比如
138481243212
138481243212
138481243212) 那么他的长度就一定是有限的; 因此{有限,无限}两者的关系 是很微妙的, 这个集合是无限的 但对于其任一元素 一定是确定的/有限的;
比如LINK: (https://editor.csdn.net/md/?articleId=131685421)-(@LOC_1)
, 即(可数个)长度为无限的序列
A
1
,
A
2
,
.
.
.
A1, A2, ...
A1,A2,... 的并集 也是可数集合中, 你可能认为 使用这种对角线法(第
i
i
i轮 选择
A
1
,
A
2...
,
A
i
A1,A2...,A_i
A1,A2...,Ai中各选1个元素) 给这些
ℵ
0
2
\aleph_0 ^2
ℵ02个数编号, 对于第无穷个序列的元素 什么时候能轮得到他编号呢?
这个问题本身是错误的, 问题出在第无穷个序列, 即
A
+
∞
A_{+\infty}
A+∞这个序列就不存在 你问他里面的元素 更是不存在; 你的问题 其实是 对于任意一个元素X 求其编号, 那么这个元素X 他所在的序列 (假设所有序列的元素都不同) 一定是确定的 比如是
A
i
A_i
Ai;
因此 一定要区分(无限有限)的关系, 虽然元素个数是无限(不管是可数/不可数)的 但只要对于任意元素 (他一定确定的, 比如 π ∈ R \pi \in \mathbb R π∈R 这个元素就是确定的 就是 π \pi π) 他就是有限的/确定的;
可数(可列)集合 Countable(Enumerable) set
定义
S为一集合
条件:
∣
S
∣
≤
ℵ
0
|S| \leq \aleph_0
∣S∣≤ℵ0;
.
#等价表述#: 对任意S的元素, 可以在有限次操作内 得到其哈希值(
≥
0
\geq 0
≥0的整数);
结论: S为可数集合;
.
#等价表述#: 集合S 可以进行序列化;
性质
#可数集 一定是全序集#
因为每个元素可以对应一个自然数, 那么就以这个自然数做比较即可;
错误
#存在最值元素的全序集, 是可数的#
错误, [ 0 , 1 ] [0,1] [0,1]之间的有理数集 存在最值 是可数的; 但 [ 0 , 1 ] [0, 1] [0,1]之间的实数 也存在最值 但不是可数的;
而且更重要的是, 不存在最值 也可以是可数的; 比如 ( 0 , 1 ) (0,1) (0,1)之间的有理数 没有最值 但是可数的;
因此, 不要以为 可数集就是: 一个全序集 存在一个最值元素 然后以这个最值元素为序列头 其他元素单调的一字排开, 即形如[M, ...]
形式;
这是错误的, 因为你不一定能找到...
的最值;
@DELI;
#全序集一定是可数集#
MARK: @LOC_0
错误; 最简单的 [ 0 , 1 ] [0,1] [0,1]实数 是全序的 但不可数;
以[0,1]
之间的有理数为例 (定义0的分数为
0
/
1
0/1
0/1), 定义(a,b) (c,d)
的二元关系为if( a != c) return a < c; return b < d;
(注意先比较的是分子);
他的全序集为(0,1) (1, [1,2,3,4,5,...]) (2,3) ...
, 这不是序列化! 因为你能获取*(2,3)元素的下标吗? 他前面可是有无穷个元素; 因此全序集 不一定能够序列化*;
但是同样的
[
0
,
1
]
[0,1]
[0,1]有理数集, 把比较规则修改成 先比较分母, 那么就变成了 (0,1) (1,1) | (1,2) | (1,3) (2,3) | (1,4) (3,4) | ...
, 此时确实是序列化成功了, 每个元素 都可以通过有限次操作 获取其下标;
不可数集合 Uncountable set
定义
S为一集合
条件:
∣
S
∣
>
ℵ
0
|S| > \aleph_0
∣S∣>ℵ0;
结论: S为不可数集合;
可数无限集合 Countably infinite set
定义
条件:
∣
S
∣
=
ℵ
0
|S| = \aleph_0
∣S∣=ℵ0;
结论: S为可数无限集合;