数学 {有限/无限集合,可数/不可数集合}

数学 {有限/无限集合,可数/不可数集合}
@LOC: 1

有限集合 Finite set

定义

S为一集合
条件: ∣ S ∣ < ℵ 0 |S| < \aleph_0 S<0;
结论: S为有限集合;

无限集合 Infinite set

定义

S为一集合
条件: S不是有限集合;
结论: S为无限集合;

性质

#大多时候 你只去区分(有限 和 无限)即可, 不用关注是可数/不可数#
比如对于自然数集 虽然他是无限的 你里面元素的长度是趋于无限长度的, 但对于 x ∈ N x \in \mathbb N xN这句话 此时只要你得到了一个具体的元素 x x x 他是一个确定的数(比如 138481243212 138481243212 138481243212) 那么他的长度就一定是有限的; 因此{有限,无限}两者的关系 是很微妙的, 这个集合是无限的 但对于其任一元素 一定是确定的/有限的;

比如LINK: (https://editor.csdn.net/md/?articleId=131685421)-(@LOC_1), 即(可数个)长度为无限的序列 A 1 , A 2 , . . . A1, A2, ... A1,A2,... 的并集 也是可数集合中, 你可能认为 使用这种对角线法(第 i i i轮 选择 A 1 , A 2... , A i A1,A2...,A_i A1,A2...,Ai中各选1个元素) 给这些 ℵ 0 2 \aleph_0 ^2 02个数编号, 对于第无穷个序列的元素 什么时候能轮得到他编号呢?
这个问题本身是错误的, 问题出在第无穷个序列, 即 A + ∞ A_{+\infty} A+这个序列就不存在 你问他里面的元素 更是不存在; 你的问题 其实是 对于任意一个元素X 求其编号, 那么这个元素X 他所在的序列 (假设所有序列的元素都不同) 一定是确定的 比如是 A i A_i Ai;

因此 一定要区分(无限有限)的关系, 虽然元素个数是无限(不管是可数/不可数)的 但只要对于任意元素 (他一定确定的, 比如 π ∈ R \pi \in \mathbb R πR 这个元素就是确定的 就是 π \pi π) 他就是有限的/确定的;

可数(可列)集合 Countable(Enumerable) set

定义

S为一集合
条件: ∣ S ∣ ≤ ℵ 0 |S| \leq \aleph_0 S0;
. #等价表述#: 对任意S的元素, 可以在有限次操作内 得到其哈希值( ≥ 0 \geq 0 0的整数);
结论: S为可数集合;
. #等价表述#: 集合S 可以进行序列化;

性质

#可数集 一定是全序集#
因为每个元素可以对应一个自然数, 那么就以这个自然数做比较即可;

错误

#存在最值元素的全序集, 是可数的#

错误, [ 0 , 1 ] [0,1] [0,1]之间的有理数集 存在最值 是可数的; 但 [ 0 , 1 ] [0, 1] [0,1]之间的实数 也存在最值 但不是可数的;

而且更重要的是, 不存在最值 也可以是可数的; 比如 ( 0 , 1 ) (0,1) (0,1)之间的有理数 没有最值 但是可数的;

因此, 不要以为 可数集就是: 一个全序集 存在一个最值元素 然后以这个最值元素为序列头 其他元素单调的一字排开, 即形如[M, ...]形式;
这是错误的, 因为你不一定能找到...的最值;

@DELI;

#全序集一定是可数集#
MARK: @LOC_0

错误; 最简单的 [ 0 , 1 ] [0,1] [0,1]实数 是全序的 但不可数;

[0,1]之间的有理数为例 (定义0的分数为 0 / 1 0/1 0/1), 定义(a,b) (c,d)的二元关系为if( a != c) return a < c; return b < d; (注意先比较的是分子);
他的全序集为(0,1) (1, [1,2,3,4,5,...]) (2,3) ..., 这不是序列化! 因为你能获取*(2,3)元素的下标吗? 他前面可是有无穷个元素; 因此全序集 不一定能够序列化*;

但是同样的 [ 0 , 1 ] [0,1] [0,1]有理数集, 把比较规则修改成 先比较分母, 那么就变成了 (0,1) (1,1) | (1,2) | (1,3) (2,3) | (1,4) (3,4) | ..., 此时确实是序列化成功了, 每个元素 都可以通过有限次操作 获取其下标;

不可数集合 Uncountable set

定义

S为一集合
条件: ∣ S ∣ > ℵ 0 |S| > \aleph_0 S>0;
结论: S为不可数集合;

可数无限集合 Countably infinite set

定义

条件: ∣ S ∣ = ℵ 0 |S| = \aleph_0 S=0;
结论: S为可数无限集合;

性质

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值