数学 {面积}
@LOC: 2
面积
定义
歐式空間中的二維封閉區域R:
@IF(R為矩形): 面積定義為(高度*寬度);
@ELSE: 將R區域 移动到X軸的上方, 令
f
(
x
)
f(x)
f(x)為區域R與豎直線
X
=
x
X=x
X=x的交集(若干個垂直的線段)的長度, 令
[
l
,
r
]
[l,r]
[l,r]滿足
∀
x
∈
[
l
,
r
]
,
區域
R
與
(
X
=
x
)
有交集
\forall x \in [l,r], 區域R與(X=x)有交集
∀x∈[l,r],區域R與(X=x)有交集, 則面積定義為 積分
∫
l
r
f
(
x
)
d
x
\int_l^r f(x)dx
∫lrf(x)dx;
相关定义
#面积的切割#
#面积的拼接#
#面积的覆盖#
解释
@DELI;
笛卡尔坐标系里, 面积为A的二维形状;
1: 如果是矩形 设他的长高为H,L
, 则一定有
H
∗
L
=
A
H*L = A
H∗L=A;
.
虽然这是在度量空间里, 但面积的本质 是切割与覆盖, 因此一定要从非度量空间去证明! 换句话说 如果你说1*1
的矩形面积值的定义 就是
1
∗
1
1*1
1∗1 这是错的!!! LINK: @LOC_1
;
.
引言: (长A,高B)的矩阵 是(A,B/K)矩阵面积的 K倍; 根据面积的切割可知 即对这个高B 分成K份 然后横着切割 那么每个小矩阵面积都是(A,B/K)的;
.
引言: (长A,高B)的矩阵 是(A/L,B/K)矩阵面积的 L*K
倍; 根据面积的切割可知 即对这个高B 分成K份 然后横着切割 再对这个长A 分成L份 然后竖着切割 那么每个小矩阵面积都是(A/L,B/K)的;
.
证明: 令H = h.hs, L = l.ls
, 则
H
∗
L
=
(
h
+
0.
h
s
)
∗
(
l
+
0.
l
s
)
=
h
∗
l
+
h
∗
0.
l
s
+
l
∗
0.
h
s
+
0.
h
s
∗
0.
l
s
H*L = (h + 0.hs) * (l + 0.ls) = h*l + h*0.ls + l*0.hs + 0.hs * 0.ls
H∗L=(h+0.hs)∗(l+0.ls)=h∗l+h∗0.ls+l∗0.hs+0.hs∗0.ls, (h,l)的矩形 是(1,1)矩形的h*l
倍, 其实就是从切割的角度 将(H,L)的矩形 切割下取整(H-1) + (L-1)
刀 变成成面积都
≤
1
\leq 1
≤1的矩阵; 这四个部分的面积 分别为h*l, h*0.ls, ...
, 他们加起来 就是原面积;
2: 他是该空间里
1
∗
1
1*1
1∗1正方形的A倍, 这里的倍数 讲的是 比例关系, 即LINK: @LOC_0
(这个性质 是与度量无关的, 虽然此时是在有度量的坐标系里);
@DELI;
#公理: 自然界天生就有个面积这个概念 两个面积可以比较相对大小#
举例: 两个很薄的矩形板子AB, 如果他俩存在包含/覆盖关系 自然被包含者就是面积小的; 关键是讨论 他俩有交集的情况: 把他俩的左下角对齐 固定A不动, 如果B的高度大于A 则把他切分成上下2部分 (下面这部分与A的高度相同), 将上面部分紧挨着B的下面部分 放到他的右侧, 重复此过程, 最终的B 他的高度是和A相同的! 此时就比较B的长度 与 A的长度 的大小即可;
即两个面积AB的比较 有A=B, A>B, A<B
三种情况;
注意, 以上的讨论 是在(没有度量 没有单位 没有数字概念)的前提下, 所以才讲 自然界天生就有的性质;
#在没有度量 但有自然数系统的情况下, 两个长度 可以确定其比例关系#
MARK: @LOC_0
;
做法: (建立在有误差的情况下 因为现实世界一定存在误差) 对于两个面积为AB的矩形板子 选择一个特别小的面积为C的矩形板子 满足AB的长是C的长的倍数 AB的高是C的高的倍数 (通过将若干个C板子进行拼接 来判断是否满足这一点), 那么这两个倍数(自然数)之比 就是其比例关系;
.
注意, 这个矩形板子C 并不是度量单位! 因为他不是唯一的 你选择一个C/{2/3/4/...}
的板子 都可以; AB的比较 并不建立在C上 他只是中间产物;
因此, 自然界天生 两个面积就存在比例关系 (在没有度量的前提下);
以上只是讨论两个板子之间的面积相对大小关系, 可是, 如果我们有很多板子 要比较他们的面积, 如果还用上面这种两两对比的方式 就太繁琐了, 于是发展出度量, 即放到坐标系里面去讨论;
性质
面积的本质 就是切割与覆盖;
比如
A
<
B
A<B
A<B 那么一个面积为A的薄板子 一定会被长度为B的薄板子 所包含/覆盖 (必要时 可以对B板子进行切割);
@DELI;
切割不影响面积;
一个面积为A的薄板子 切割成面积为
B
,
C
B,C
B,C两部分, 则一定有
A
=
B
+
C
A = B+C
A=B+C;
错误
#面積的大小 反映了 其內部的線段的長度總和的大小#
錯誤;
看面積的定義
∫
l
r
f
(
x
)
d
x
\int_l^r f(x)dx
∫lrf(x)dx, 雖然說
f
(
x
)
f(x)
f(x)就是表示 你這裡所說的(內部的線段) 但是 他畢竟是(積分), 雖然涉及到(線段長度) 但是 你還是要去理解(積分)的定義, 什麼是積分;
.
即, 對許多的線段進行積分, 並不是說 就是這些線段的長度的和, 積分不是這樣的定義(積分的定義是: 若干個矩形面積的和的極限值);
.
即面積的定義 是由矩形的面積而來的, 即(線段長度 * 寬度) 還有一個寬度 不是單獨的線段高度 只不過說 積分算子他的參數 是若昂個是線段長度 即
∫
f
(
x
)
d
x
\int f(x)dx
∫f(x)dx 其中的f 就是線段高度 但這並不意味著 積分就是(線段的個數) 這是完全錯誤的! (線段還有長度呢 你怎麼能把長度給省去 而只去計算他個數呢), 準確來說 他就是指的是(柱狀圖的面積) 即f(a) * dx
對應 高度為f(a)
寬度為dx
的柱狀圖的面積, 即積分的前提是 你要對矩形面積/線段長度進行定義;
@DELI;
#周长越大 面积越大#
错误; 比如4*4
矩形{周长
16
16
16 面积为
16
16
16}; 而1*10
矩形{周长
22
22
22 面积为
10
10
10};
例題
圓的面積並, 這道題 你可以對 面積的定義式裡的
f
(
x
)
f(x)
f(x)的含義 有更高的理解; @LINK: https://editor.csdn.net/md/?articleId=132989973
;
笔记
只有二维形状有面积这个性质;
面积的比较 需要借助切割与拼接, 评判的依据是覆盖;
XX是XXX的面积的K倍, 此时不需要有度量, 说明: XX可以切割成K份 每一份和XXX的面积相同;
XX的面积为
K
K
K, 表示此时有一个度量空间 XX是该度量空间里1*1
正方形面积的K倍;
.
换句话说, 面积值是个相对概念, 你不可以说 长A高B的矩形 他的面积值就定义为A*B
这是大错特错的! 虽然A*B
就是他的面积值 但面积值的定义/含义是 单位正方形的K倍; MARK: @LOC_1
;
笛卡尔坐标系里, 长为A高为B的矩阵的面积为 A ∗ B A*B A∗B;