一、Pandas中的算术运算
1. Series的算术运算
Pandas的核心数据结构之一是Series,它类似于一维数组,可以进行各种算术运算。
import pandas as pd
# 创建两个Series对象
s1 = pd.Series([1, 2, 3, 4], index=['A', 'B', 'C', 'D'])
s2 = pd.Series([10, 20, 30, 40], index=['A', 'B', 'C', 'D'])
# 加法运算
result_add = s1 + s2
# 减法运算
result_sub = s1 - s2
# 乘法运算
result_mul = s1 * s2
# 除法运算
result_div = s1 / s2
print("加法运算结果:")
print(result_add)
print("\n减法运算结果:")
print(result_sub)
print("\n乘法运算结果:")
print(result_mul)
print("\n除法运算结果:")
print(result_div)
2. DataFrame的算术运算
除了Series,Pandas还提供了DataFrame数据结构,它类似于二维表格,可以进行各种复杂的算术运算。
import pandas as pd
# 创建两个DataFrame对象
data1 = {'A': [1, 2, 3], 'B': [4, 5, 6]}
data2 = {'A': [10, 20, 30], 'B': [40, 50, 60]}
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
# 加法运算
result_add = df1 + df2
# 减法运算
result_sub = df1 - df2
# 乘法运算
result_mul = df1 * df2
# 除法运算
result_div = df1 / df2
print("加法运算结果:")
print(result_add)
print("\n减法运算结果:")
print(result_sub)
print("\n乘法运算结果:")
print(result_mul)
print("\n除法运算结果:")
print(result_div)
二、Pandas中的逻辑运算
Pandas还提供了丰富的逻辑运算功能,用于筛选和处理数据。
1. 条件筛选
import pandas as pd
data = {'A': [1, 2, 3, 4, 5],
'B': [10, 20, 30, 40, 50]}
df = pd.DataFrame(data)
# 筛选满足条件的行
filtered_df = df[df['A'] > 2]
print("满足条件的行:")
print(filtered_df)
2. 逻辑运算
import pandas as pd
data = {'A': [True, False, True, False],
'B': [True, True, False, False]}
df = pd.DataFrame(data)
# 逻辑与运算
result_and = df['A'] & df['B']
# 逻辑或运算
result_or = df['A'] | df['B']
# 逻辑非运算
result_not = ~df['A']
print("逻辑与运算结果:")
print(result_and)
print("\n逻辑或运算结果:")
print(result_or)
print("\n逻辑非运算结果:")
print(result_not)