[扩展欧拉定理]P4139


2 2 2 2 2 . . . m o d   p 2^{2^{2^{2^{2^{...}}}}}mod\,p 22222...modp
p ≤ 1 0 7 p\leq 10^7 p107


显然硬干是不行的,那么考虑别的思路。设 f ( p ) f(p) f(p) 为原式模 p p p 的解,那么 f ( p ) = 2 f ( φ ( p ) ) + φ ( x ) f(p)=2^{f(\varphi(p))+\varphi(x)} f(p)=2f(φ(p))+φ(x) ,递归可以求出上一项的值即可,边界是 φ ( p ) = 1 \varphi(p)=1 φ(p)=1 f ( p ) = 0 f(p)=0 f(p)=0 ,需要预处理出 φ \varphi φ 的值。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
int prime[10000005],phi[10000005],tot;
bool not_prime[10000005];
int t,pp;


void getp(){
	phi[1]=1;
	for(int i=2;i<=10000000;++i){
		if(not_prime[i]==0){
			prime[++tot]=i;
			phi[i]=i-1;
		}
		for(int j=1;(prime[j]*i)<=10000000 && j<=tot;++j){
			not_prime[i*prime[j]]=1;
			if((i%prime[j])==0){
				phi[i*prime[j]]=phi[i]*prime[j];
				break;
			}
			phi[i*prime[j]]=phi[i]*phi[prime[j]];
		}
	}
}

ll Qpow(ll a,ll b,ll p){
	ll ret=1;
	while(b){
		if(b&1)
			ret=(ret*a)%p;
		b>>=1;
		a=(a*a)%p;
	}
	return ret;
}

ll f(ll x){
	if(phi[x]==1)
		return 0;
	ll q=f(phi[x]);
	return Qpow(2,q+phi[x],x);
}



int main(){
	getp();
	scanf("%d",&t);
	while(t--){
		scanf("%d",&pp);
		printf("%lld\n",f(pp));
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值