自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(23)
  • 收藏
  • 关注

原创 【无标题】

【代码】【无标题】

2023-09-10 13:37:56 147

原创 深度学习第五次培训(CNN卷积神经网络)

卷积神经网络是使用卷积层(Convolutional layers)的神经网络,基于卷积的数学运算。对图像(不同的数据窗口数据)和滤波矩阵(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的卷积操作,也是卷积神经网络的名字来源。最左边是数据输入层,对数据做一些处理,比如去均值(把输入数据各个维度都中心化为0,避免数据过多偏差,影响训练效果)、归一化(把所有的数据都归一到同样的范围)、PCA/白化等等。

2022-09-08 18:52:31 862 1

原创 深度学习第四次培训(SVM算法)

考虑到我们的目的并不是为找到这样一个映射而是为了计算其在高维空间的内积,因此如果我们能够找到计算高维空间下内积的公式,那么就能够避免这样庞大的计算量,我们的问题也就解决了。训练完成之后就可以拿去预测了,根据函数y=wx+b的值来确定样本点x的label,不需要再考虑训练集。如下图所示, w⋅x+b=0 即为分离超平面,对于线性可分的数据集来说,这样的超平面有无穷多个(即感知机),但是几何间隔最大的分离超平面却是唯一的。以上讨论的都是在线性可分情况进行讨论的,但是实际问题中给出的数据并不是都是线性可分的。

2022-09-06 17:43:53 788

原创 深度学习第三次培训(KNN算法)

KNN(K-Nearest Neighbor)算法,意思是K个最近的邻居,从这个名字我们就能看出一些KNN算法的蛛丝马迹了。K个最近邻居,毫无疑问,K的取值肯定是至关重要的。,通俗来讲,KNN算法原理就是当预测一个新的值x时候,根据它距离最近的K个点是什么类别来判断x属于哪个类别。图中绿色的点就是我们要预测的那个点,假设K=3,那么KNN算法就会找到与它距离最近的三个点(这里用圆圈把它圈起来了),看看哪种类别多一些,比如这个例子中是蓝色三角形多一些,新来的绿色点就归类到蓝三角了。2.预测阶段可能很慢。

2022-09-04 18:15:35 374

原创 深度学习第二次培训(BP神经网络)

以上图来说感知机分为三层,图中从左至右依次分为输入层,隐含层和输出层,其中,x1,x2是输入信号,y是输出信号,w1,w2是权重,o是“神经元”,或者叫做节点。感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此,导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。如图所示,所得结果与实际值0.01和0.99还相差很远,所以需要反向计算,更新权值,重新计算输出。将上一层的输出作为下一层的输入,并计算下一层的输出,一直到运算到输出层为止。同理,计算出h2的输出 o2。

2022-09-02 18:29:06 993

原创 鸿蒙OS应用开发第四次培训

在confing.json中某个JS中://导入鸿蒙的网络请求模块fetchimport fetch from '@system.fetch';export default { data: { winfo:"" }, onInit() { //发起对心知天气服务器的网络请求 fetch.fetch({ url:`https://api.seniverse.com/v3/weather/now.json?

2022-07-06 12:53:56 104

原创 鸿蒙OS应用开发第三次培训

路由的跳转:router.push(OBJECT),跳转到应用内的指定页面。router.replace(OBJECT),用应用内的某个页面替换当前页面,并销毁被替换的页面。router.back(OBJECT),返回上一页面或指定的页面。router.clear(),清空页面栈中的所有历史页面,仅保留当前页面作为栈顶页面。router.getLength(),获取当前在页面栈内的页面数量。router.getState(),获取当前页面的状态信息。...

2022-07-06 12:28:08 82

原创 鸿蒙OS应用开发第二次培训

JS UI框架支持自定义组件,用户可根据业务需求将已有的组件进行扩展,增加自定义的私有属性和事件,封装成新的组件,方便在工程中多次调用,提高页面布局代码的可读性。1.定义一个专门存放自定义组件的文件夹 components.tabbar 并设置3个基础文件 tabbar.hml、tabbar.js、tabbar.css,需要注意的是:3个文件的文件名必须保持一致,不然会存在找不到文件的情况。该自定义组件的目的是给页面底部配置一个 tabbar 选项卡体验。2.设置底部选项卡对应的 json 数据源,用来保存

2022-07-05 21:59:23 254

原创 鸿蒙OS应用开发第一次培训

应用资源可通过绝对路径或相对路径的方式进行访问,对开发框架中绝对路径以"/“开头,相对路径以“./”或”…/",具体访问规则如下:引用代码文件,需使用相对路径,比如:…/common/utils.js引用资源文件,推荐使用绝对路径。比如:/common/xxx.png公共代码文件和资源文件推荐放在common下,通过以上两条规则进行访问css样式文件中通过 url()函数 创建数据类型,如:url(/common/xxx.png)。如果代码文件A和文件B位于同一目录,则代码文件B引用资源文件时可使用相对路径

2022-07-05 21:38:25 282

原创 Modelarts第一次培训

目录1.提前完善配置2.创建OBS browser3.自动学习在全局配置里面添加授权进行委托,这是必须的一步,否则后面无法进行2.1创建桶 2.2对桶进行属性完善2.3将数据放入桶中3.1AIgallery网站数据集里会有案例,下载案例到对应桶的文件夹中3.2在modelarts的控制台中开始自动学习3.3创建项目 3.4自动学习过程 3.5开始训练 3.6 训练结束,可以开始部署 3.7服务测试...

2022-06-05 21:25:54 87

原创 Modelarts第二次培训

1.先在桶中创建声音分类的桶,并且上传数据2.在modelarts中的自动学习中创建声音分类创建声音分类项目1.进行数据标注2.模型训练3.部署上线1.创建数据集并且导入和发布2.自动学习创建项目3.数据标注4.进行模型训练5.部署上线...

2022-06-05 21:08:57 201

原创 小小白从零进行机器学习(正则化)

过度拟合问题:以线性回归预测房价模型为例子,我们通过建立以住房面积为自变量的函数来预测房价,我们可以用一次函数来拟合数据,也可以用二次函数乃至更高阶函数来拟合数据,当用一次函数拟合数据时,我们看到并没有很好的拟合数据集,这叫欠拟合,另外一个说法是这个算法有高偏差,如果我们用一个四阶多项式来拟合数据集,那么我们可以拟合出来一个曲线通过全部五个训练样本,但这是一条扭曲的曲线,我们并不认为这是一个拟合房价的很好模型,这个问题我们称之为过度拟合,另一个说法是这个算法有高方差,因为这个假设函数看似能拟合几乎所有的

2022-05-29 11:25:00 92

原创 小小白从零进行机器学习(离散型变量预测的分类问题)

二分类问题:之前我们谈到垃圾文件的分类和肿瘤的良性和恶性的判断问题,还有网上交易等,在这些问题中,我们所预测的变量y都是可以有两个取值的变量,0或1,垃圾邮件或非垃圾邮件,恶性或阳性我们用0来表示负类,用1来表示正类,所以0可以用来表示良性肿瘤,而1可以用来表示恶性肿瘤,而在问题中,哪个是正类,哪个是负类,表示什么,哪个是0哪个是1是任意的,没有什么区别,但往往用负类表示没有哪样东西,我们先讨论只包含0和1两类的分类问题,后面会讨论多分类的东西,其中y的取值可以分为1,2,3等Logistic

2022-05-21 23:17:30 1938

原创 小小白从零进行机器学习(多个特征量的线性回归算法)

本文开始介绍一种新的线性回归版本,此版本适用于多个变量或多个特征量的情况

2022-05-07 00:21:48 1016

原创 小小白从零进行机器学习(单一特征量的线性回归算法)

线性回归模型描述:代价函数:以线性回归函数为例,其中h(x)为所设立的假设函数,1和0为上述假设函数的两个参数,m为样本总数,在线性回归中,有训练集,我们要做的就是得出1和2这两个参数的值使假设函数表示的直线能够尽量的与这些数据点(下图中的叉号)很好的拟合。那么如何让它更好的拟合数据呢,方法就是使h(x)也就是我们输入x函数预测的值最接近样本的y的1和​​​​​​​2算出来,所以,在线性回归问题中,我们要解决的就是一个最小化的问题,关于​​​​​​​​​​​​​​参数的最小化和.

2022-04-30 00:54:33 816

原创 小小白从零进行机器学习(监督学习和无监督学习)

监督学习(以下两个例子):定义:给算法一个数据集,里面包含正确的答案,算法是的目的是给出更多的正确答案,用多种特征或属性来预测算法(回归问题):算法(分类问题):无监督学习(以下两个例子):定义:没有标签或具有相同标签或都没有标签,没有把数据集的正确答案给算法,要它找出数据的类型结构聚类算法:聚类算法会判断出两个簇,如图没有标签,以下是其应用:谷歌通过此种算法的分块新闻...

2022-04-28 19:50:40 2244

原创 第七次网页前端培训(JS基础语法第三部分以及JS事件)

1 内置对象2 对象3 事件

2022-02-11 22:00:24 506

原创 第六次网页前端培训(JS基础语法第二部分)

1 运算符与控制语句2 数组3 函数的定义与参数4 函数的调用和返回值

2022-02-10 23:40:52 310

原创 第五次网页前端培训(JS基础语法第一部分)

1 JS的基本使用2 JS基础语法3 JS基础语法——变量4 JS基础语法——数据类型5 JS基础语法——类型转换16 JS基础语法——类型转换2

2022-02-09 23:59:16 203

原创 第四次网页前端培训(CSS第二部分)

1 CSS常用属性2 CSS盒子模型

2022-02-08 22:24:57 195

原创 第三次网页前端培训(CSS第一部分)

1 CSS的基本使用2 CSS基础选择器3 CSS组合选择器

2022-02-06 23:43:10 469

原创 第二次网页前端培训(HTML其他标签)

1 表单标签2 input标签3 表单元素标签4 常用字符实体

2022-02-05 21:32:15 222

原创 第一次网页前端培训(HTML常用标签)

1 安装编译器HBuilder X2 HTML基本框架3 HTML常用标签第一部分

2022-02-03 21:41:08 246

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除