儿童节那天有 K 位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 N 块巧克力,其中第 i 块是 Hi×Wi 的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出 K 块巧克力分给小朋友们。切出的巧克力需要满足:
-
形状是正方形,边长是整数。
-
大小相同。
例如一块 6×5 的巧克力可以切出 6 块 2×2 的巧克力或者 2 块 3×3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小 HiHi 计算出最大的边长是多少么?
Input
第一行包含两个整数 N 和 K。(1≤N,K≤105)
以下 N 行每行包含两个整数 Hi 和 Wi。(1≤Hi,Wi≤105)
输入保证每位小朋友至少能获得一块 1×1 的巧克力。
Output
输出切出的正方形巧克力最大可能的边长。
Sample 1
Inputcopy | Outputcopy |
---|---|
2 10 6 5 5 6 | 2 |
需要用到二分答案法来解决,将巧克力的长和宽分别保存在两个列表中,而后通过循环累和来判断是否足够分配。
for(int i=0;i<a;i++) cnt+=(c[i]/mid)*(str[i]/mid);
由于是找最大,所以还是右二分。
总代码
#include<bits/stdc++.h>
using namespace std;
int a,b,mid;
int c[100010],str[100010];
bool check(int mid){
int cnt=0;
for(int i=0;i<a;i++) cnt+=(c[i]/mid)*(str[i]/mid);
if(cnt>=b)
return true;
else
return false;
}
int main(){
cin>>a>>b;
for(int i=0;i<a;i++){
cin>>c[i]>>str[i];
}
int l=1,r=100000,ans;
while(l<r){
int cnt=0;
mid=(l+r+1)/2;
if(check(mid)) l=mid;
else r=mid-1;
}
cout<<l;
return 0;
}
总结
对二分答案的需要有所理解。