前言
对于利用递归实现二叉树的先序、中序以及后序比较简单,本文不在细述
一、基本结构及思想
本文二叉树是利用结构体来实现的,
如图:
typedef struct SqTree {
char val; //树的值
struct SqTree* Lchild; //树的左子树
struct SqTree* Rchild; //树的右子树
}SqTree;
其次,还会借用到栈的思想,我想既然大家都学到二叉树了,那么栈肯定也不陌生,栈是后进先出
参数的传递使用的是C语言中的指针
好了,废话不多说了,我们假设现在如今有一棵树,如图所示:
二、开始实现
开始之前大家在阅读的过程中最好还是拿起笔跟着在下的思路走一遍
1.先序遍历
首先我们要知道先序遍历的顺序为:根节点-左子树-右子树 先看代码
void preOrder(SqTree* tree) { //先序遍历
SqTree* stack[1024];
int stacktop = -1;
SqTree* root = tree;
while (root != NULL || stacktop >= 0) {
while (root != NULL) {
printf("%c\t", root->val);
stack[++stacktop] = root;
root = root->Lchild;
}
if (stacktop >= 0) {
SqTree* temp = stack[stacktop--];
root = temp->Rchild;
}
}
}
可以看到我们先以数组的形式来一个栈,变量stacktop初值为-1表示栈中元素为0.
形参tree表示的是根节点。
变量root则进行对每个节点进行遍历。
当栈中元素为空并且root为NULL也就是遍历完所有的节点后结束循环。
可以看到,先在控制端上打印出节点的值,再将该节点压栈,往左子树走;当左子树为空的时候再进行出栈。
出栈后分为俩种可能,第一种是该节点没有右子树,那么则会继续出栈。第二种则是存在右子树则会继续进入循环:打印节点的值,压栈,往节点的左子树走。
直到root为NULL以及栈中元素为空的时候整个循环结束
总体来说:就是进循环先打印,再入栈,走左树,左树为空出循环再出栈,走右树,再进循环先打印,走左树直到遍历完所有节点和栈中节点全部出栈
2.中序遍历
中序遍历的顺序为:左子树-根节点-右子树 先看代码
void midOrder(SqTree* tree) { //中序遍历
SqTree* stack[1024];
int stacktop = -1;
SqTree* root = tree;
while (root != NULL || stacktop >= 0) {
while (root != NULL) {
stack[++stacktop] = root;
root = root->Lchild;
}
if (stacktop >= 0) {
SqTree* temp = stack[stacktop--];
printf("%c\t", temp->val);
root = temp->Rchild;
}
}
}
可以看到中序遍历与先序遍历相差不大,无非就是在控制台上输出的顺序改变
总体:就是进循环先入栈,走左树,左树为空就出栈,出栈节点先打印,再走右树,再进循环走左树 直到遍历完所有节点和栈中节点全部出栈
3.后序遍历
后序遍历顺序为:左子树-右子树-根节点
void lastOrder(SqTree* tree) { //后序遍历
SqTree* stack[1024];
int stacktop = -1;
SqTree* root = tree;
SqTree* flag = NULL; //防止因为元素二次入栈而进入死循环
while (root != NULL) {
stack[++stacktop] = root;
root = root->Lchild;
}
while (stacktop >= 0) {
SqTree* temp = stack[stacktop--];
if (temp->Rchild != NULL&&temp->Rchild!=flag) {
stack[++stacktop] = temp;
root = temp->Rchild;
while (root != NULL) {
stack[++stacktop] = root;
root = root->Lchild;
}
}
else {
printf("%c\t", temp->val);
flag = temp;
}
}
}
后序遍历应该是最难的了,在后序遍历中一个节点会出现多次入栈,这样的话会有死循环的出现
可以看到,当取出E后,会走右子树即J,并再次会将E入栈,为什么要这么做呢?因为E相比与I和J来说是不是可以说是他们的根节点呢,那么后续遍历时根节点是最后进行输出的,所以要将其再次入栈以便先将左子树和右子树的节点先打印。 这样的话就会出现E不断的出栈和入栈,J不断的进行打印进入了一个死循环。所以我们就需要一个标记变量也就是flag,当进入到J的时候会打印J同时更新flag变量,再将E出栈的时候判断是否已经遍历过J,遍历过后就不会走右边了而是将其打印后再进行下一次的出栈,这样的就能达到先输出左子树,再输出右子树,最后输出根节点了
总体:就是先进行循环入栈,走左树,直到左树为空出循环,先出栈,出栈后,判断该节点右子树是否为空,不为空再与标记变量比较是否相等,不相等则再进入循环入栈,走左树;否则就进行打印并更新标记元素,再出栈
总结
在下还只是初学者,也是想分享自己所学习到的知识。如有错误欢迎指正