决策树是一种预测模型,代表的是对象属性与对象值之间的映射关系。
决策树是一种树形结构,其中:每个内部结点表示一个属性的判断每个分支表示一个判断结果的输出每个叶结点代表一种分类类别决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法
决策树的决策过程就是从根节点开始,测试待分类项中对应的特征属性,并按照其值选择输出分支,直到叶子节点,将叶子节点的存放的类别作为决策结果。
决策树是一种树状结构,通过做出一系列决策(选择)来对数据进行划分,这类似于针对一系列问题进行选择。
建立决策树的关键,即在当前状态下选择哪个属性作为分类依据。根据不同的目标函数,建立决策树主要有一下三种算法:
ID3(Iterative Dichotomiser)、
C4.5、
CART(Classification And Regression Tree)